删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

发动机短舱泄压过程瞬态仿真*

本站小编 Free考研考试/2021-12-25

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆牊顏犵紒鈧繝鍌楁斀闁绘ɑ褰冮埀顒€顕槐鎾愁潩鏉堛劌鏋戦梺鍝勫暙閻楀嫰鍩€椤戣法绐旂€殿喕绮欓、姗€鎮欓懠鍨涘亾閸喒鏀介柨娑樺娴犙呯磼椤曞懎鐏︾€殿噮鍋婇幃鈺冪磼濡攱瀚奸梻鍌欑贰閸嬪棝宕戝☉銏″殣妞ゆ牗绋掑▍鐘绘煙缂併垹鏋熼柣鎾跺枛閺岀喖宕归鍏兼婵炲瓨绮嶆竟鍡涘焵椤掑喚娼愭繛鍙夌墬閺呰埖鎯旈妸銉ь唹闂佸憡娲﹂崜姘叏濠婂牊鐓涘璺侯儏椤曟粓鏌f惔銏犫枙婵﹤顭峰畷鎺戔枎閹寸姷宕查梻渚€鈧偛鑻晶浼存煕鐎n偆娲撮柟宕囧枛椤㈡稑鈽夊▎鎰娇濠电偛顕崢褔鎮洪妸鈺傚亗闁哄洢鍨洪悡鐔镐繆椤栨繂鍚归柛娆屽亾闂備礁鎲¢悷銉р偓姘煎櫍閸┾偓妞ゆ帒鍠氬ḿ鎰箾閹绘帞绠荤€规洖缍婇幊鐐哄Ψ閵堝洨鐣鹃梻浣稿閸嬪懎煤閺嶎厽鍊峰┑鐘叉处閻撳繐鈹戦悙鑼虎闁告梹娼欓湁闁稿繐鍚嬬粈瀣叏婵犲啯銇濋柟绛圭節婵″爼宕ㄩ閿亾妤e啯鈷戦柤濮愬€曢弸鍌炴煕鎼淬垹鈻曢柛鈹惧亾濡炪倖甯婄粈渚€宕甸鍕厱婵炲棗绻愰弳娆愩亜閺囶亞绉鐐查叄閹稿﹥寰勯幇顒佹毆闂傚倷绶氬ḿ褔篓閳ь剙鈹戦垾铏枠鐎规洏鍨介弻鍡楊吋閸″繑瀚奸柣鐔哥矌婢ф鏁幒鎾额洸濞寸厧鐡ㄩ悡鏇㈡煙閹屽殶闁瑰啿娲弻鏇㈠幢濡も偓閺嗘瑩鏌嶇拠鏌ュ弰妤犵偛顑夐幃鈺冨枈婢跺苯绨ラ梻鍌氬€风粈渚€骞夐敓鐘冲仭闁挎洖鍊归弲顏堟煟鎼淬値娼愰柟鍝デ硅灋婵炴垯鍨归悞鍨亜閹烘垵鏋ゆ繛鍏煎姈缁绘盯骞撻幒鏃傤啋閻庤娲樼换鍫ョ嵁鐎n喗鏅濋柍褜鍓熷鍛婄瑹閳ь剟寮婚悢鐓庣鐟滃繒鏁☉銏$厸闁告侗鍠楅崐鎰版煛鐏炶濮傞柟顔哄€濆畷鎺戔槈濮楀棔绱�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弮鍫熸殰闁稿鎸剧划顓炩槈濡娅ч梺娲诲幗閻熲晠寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬪灝顒㈤柡灞诲姂閸╃偤骞嬮敃鈧壕鍏兼叏濮楀棗骞栭柡鍡楃墦濮婅櫣绮欏▎鎯у壋闂佸摜濮甸崝妤呭箲閵忕姭妲堥柕蹇曞Х椤撳搫鈹戦悙鍙夘棞缂佺粯甯楃粋鎺楁嚃閳哄啰锛滅紓鍌欓檷閸ㄥ綊鐛幇鐗堢厱閻庯綆鍋呭畷灞炬叏婵犲懏顏犻柟椋庡█瀵濡烽鐟颁壕婵°倓鑳剁弧鈧梺閫炲苯澧繛鐓庣箻婵℃悂鏁冮埀顒€顕i崸妤佺厽閹兼番鍔嶅☉褔鏌熼懞銉х煁缂佸顦濂稿幢閹邦亞鐩庨梻浣告惈缁嬩線宕戦崟顒傤浄闁挎洖鍊归悡鐔兼煙閹呮憼缂佲偓閸愵亞纾肩紓浣贯缚濞插鈧娲栧畷顒冪亽闂佸憡绻傜€氬嘲岣块弴鐐╂斀闁绘﹩鍋呮刊浼存倶閻愯埖顥夋い顐簽缁辨挻鎷呴搹鐟扮缂備浇顕ч悧鎾崇暦濞差亜鐒垫い鎺嶉檷娴滄粓鏌熼悜妯虹仴妞ゅ繆鏅濈槐鎺楁偐椤旂厧濮曢梺闈涙搐鐎氭澘顕i鈧崺鈧い鎺戝绾惧潡鏌涢幇顖氱毢闁哄棴绠撻弻鏇熷緞閸繂濮夐梺琛″亾濞寸姴顑嗛悡鐔兼煙闁箑澧紒鐙欏嫨浜滈柕澹啩妲愰梺璇″枙缁瑩銆佸☉妯峰牚闁告剬鍕垫綗婵犵數濮烽。浠嬪焵椤掆偓绾绢參宕洪敐鍡愪簻闁靛繆鍓濈粈瀣煛娴gǹ鈧潡骞冮崜褌娌柦妯侯槺椤斿洭姊婚崒姘偓鐑芥嚄閼哥數浠氶梻浣告惈閻楁粓宕滃☉姘灊婵炲棙鎸哥粻濠氭偣閸ヮ亜鐨洪柣銈呮喘濮婅櫣鍖栭弴鐐测拤闂佽崵鍣︾粻鎾崇暦閹达箑鍐€闁靛ě鍜佸晭闂備胶纭堕崜婵婃懌闁诲繐绻嬮崡鎶藉蓟閿濆绠婚悗娑欋缚椤︺劍绻涢敐鍛悙闁挎洦浜妴浣糕槈濡攱鐎婚梺鍦劋缁诲倹淇婇幎鑺モ拻濞达絽鎳欓崷顓涘亾濞戞帗娅婄€规洖缍婂畷鐑筋敇閻曚焦缍楅梻浣筋潐瀹曟﹢顢氳婢规洟宕楅崗鐓庡伎濠碘槅鍨伴幖顐﹀箖閹存惊鏃堝籍閸啿鎷绘繛鎾村焹閸嬫捇鏌嶈閸撴盯宕戝☉銏″殣妞ゆ牗绋掑▍鐘绘倵濞戞瑡缂氱紒鐘冲劤闇夐柨婵嗘噹閺嗛亶鏌涘顒碱亪鍩ユ径濞㈢喖鏌ㄧ€e灚缍岄梻鍌欑窔濞佳呮崲閸℃稑鐒垫い鎺嗗亾闁告ɑ鐗犲畷娆撴嚍閵壯呯槇闂佹眹鍨藉ḿ褍鐡梻浣瑰濞插繘宕愬┑瀣畺鐟滃海鎹㈠┑瀣倞鐟滃繘寮昏椤啴濡堕崱妤冪懆闁诲孩鍑归崣鍐箖閿熺姴唯闁冲搫鍊婚崢浠嬫⒑閸濆嫭宸濋柛瀣洴閸┾偓妞ゆ巻鍋撴繝鈧柆宥呯劦妞ゆ帊鑳堕崯鏌ユ煙閸戙倖瀚�
中国民用航空规章第25部《运输类飞机适航标准》CCAR25.1103(d)条款规定[1]:对于涡轮发动机和辅助动力装置的引气导管系统,如在空气导管引气口与飞机用气装置之间任意部位上的导管破损,不得造成危害。发动机引气管道发生破裂或泄漏时,迅速上升的短舱内部压力可能会破坏短舱结构甚至损坏发动机,因此需安装泄压门(Pressure Relief Door,PRD)保证压力升高到一定阈值后,通过开启泄压门泄压避免短舱结构损坏或发动机故障。
短舱泄压过程是一个复杂的流动行为,不仅与短舱内外界压力、外流马赫数有关,还受到泄压门开启方式和角度及纵横比的影响。早在1957年,Vick[2]就进行了辅助排气口经过曲面管道且出口有一挡板时排气到跨声速气流中的排放和受力特性试验,试验选择了一系列压力比和马赫数,研究了挡板开启角度和纵横比对性能的影响,为泄压门设计提供了基础试验数据。
Pratt等[3-4]为了分析挡板对流场结构的影响,使用Vick[2]报告中的试验装置作为计算域进行了CFD计算,结果与试验数据基本吻合。随后,Benard等[5]对压力比大于1的泄压门排放特性进行了试验研究,结果表明在给定压力比下,排放系数随马赫数的增加而减小。Vedeshkin等[6]研究了一种与前述不同的开启方式,即泄压门铰链与来流方向平行,CFD计算和试验之间存在很好的一致性。Schott[7]考虑了泄压门纵横比、倒圆角、铰链类型、侧壁边缘围护等因素的影响,在一系列压力比、马赫数、内部温度、外界高度等条件下对短舱核心舱泄压门的排放性能和受力进行了CFD计算,得到许多对泄压门设计具有指导作用的结论。
但是上述研究中泄压门均处于静止状态,并不能反映实际泄压过程中舱内压力和开启角度随时间的瞬态变化关系。
郁成德[8]对飞机增压舱突然泄压情况进行了计算,得到了增压舱突然泄压情况下各隔舱压力载荷变化。刘华源和屠毅[9]利用Simulink仿真软件建立了民机增压舱一维动态仿真模型,对泄压过程中各增压舱瞬间压力分布进行了仿真,得到了舱室体积和舱间流通面积等参数对泄压载荷的影响。但是这些研究中,仅考虑了固定泄压口对舱内压力的影响,且没有飞机外部气流对泄压过程的作用,因此相较于发动机短舱泄压过程简单。
目前国内外均没有有关于短舱泄压门瞬态泄压过程的研究的公开报道,而庞巴迪公司与中国航发商用航空发动机有限责任公司合作过程中,对泄压门的参数选择也仅给出结果,而不提供详细的设计过程,因此掌握不同操作参数和结构参数对瞬态泄压过程的影响十分重要。采用试验方法研究成本昂贵、周期长,通过仿真计算可以减少研究代价和缩短研究周期。最精确的仿真方法是基于CFD方法,考虑气体的流动和泄压门固体受力和变形,采用流固耦合来描述泄压过程,但是该方法计算代价巨大,不利于工程设计中快速评估参数的合理性。另外一种方法是基于集中参数法的零维模型,例如文献[8-9]中采用该方法,但是该模型中很难精确计算不同马赫数的外流和不同压力的内流对泄压门的作用。
本文提出一种新的计算方法,首先采用稳态CFD方法,在某个固定的开启角度,得到不同马赫数、舱内压力、纵横比等参数下的流量系数CD和力矩M,改变开启角度,获取泄压门的流量特性关系与开启角度的关系;然后建立短舱泄压零维瞬态仿真数学模型,采用将得到的CDM代入该模型进行计算。该方法在保证计算精度的同时大大降低了计算代价,从而更好地满足实际工程需要。
Modelica语言是为解决多领域物理系统的统一建模与协同仿真,在归纳和统一先前多种建模语言的基础上,于1997年提出的一种基于方程的陈述式、面向对象的、非因果建模语言[10-11]。Modelica语言采用数学方程描述不同领域子系统的物理规律和现象,根据物理系统的拓扑结构基于语言内在的组件连接机制实现模型构成和多领域集成,通过求解微分代数方程系统实现仿真运行。Modelica语言已广泛应用于各个学科,如航空航天、电力系统、汽车系统、燃料电池等领域[12-17]。因此,本文采用Modelica语言建立仿真模型,并对模型进行求解。
1 短舱泄压过程零维瞬态仿真数学模型 1.1 泄压过程简化和基本假设 高压引气管路破裂后产生泄漏,泄漏的气体流入短舱内部,导致短舱内压力升高直至高于阈值后泄压门开启,泄压门受到短舱内外压力、泄压门开启方式、纵横比及开启角度等因素的影响,因而是一个多因素耦合作用的复杂流动过程,将泄压过程进行简化,如图 1所示。为简化计算的难度,忽略一些不重要的因素,作如下假设:高压引气管路及短舱外界环境压力、温度在整个泄压过程内保持不变;空气均视为理想气体,且泄压时不考虑传热作用,视为绝热过程;认为在短舱内部控制容积内的热力参数如温度、压力、密度等均匀一致;短舱泄压过程内部气体排放均通过泄压门排放,即不存在其他气体泄漏;泄压门刚性足够强,不考虑其变形对泄压过程的影响。
图 1 短舱泄压过程示意图 Fig. 1 Schematic diagram of nacelle pressure relief process
图选项




1.2 零维瞬态仿真数学模型 临界压比为
(1)

式中:γ为理想气体的定熵绝热指数。
p1/p0πp, cr时,流动为非临界状态,此时高压引气管路泄漏质量流量为
(2)

式中:μ为高压引气管路泄漏流量系数[18]A为泄漏面积;R为空气的气体常数;p0为高压引气管路压力;T0为高压引气管路温度;p1为短舱内部压力。
p1/p0 < πp, cr时,流动为临界状态,此时高压引气管路泄漏质量流量为
(3)

p2/p1πp, cr时,流动为非临界状态,此时泄压门排放质量流量为
(4)

p2/p1 < πp, cr时,流动为临界状态,此时泄压门排放质量流量为
(5)

式中:CD为泄压门在不同舱内压力及开启角度下的流量系数,其根据CFD稳态仿真计算得到;Adoor为泄压门面积;φ为泄压门开启角度;T1为短舱内部温度;p2为外界环境自由流静压。
短舱内部空间质量随时间变化为
(6)

式中:m1为短舱内部气体质量;m1, in为舱内流入气体质量;m1, out为舱内流出气体质量。
联立绝热流动过程方程p/ργ=C(C为常数)与理想气体状态方程pV=mRT并对时间求导可得
(7)

短舱内部温度随时间变化为
(8)

泄压门转动时,泄压门转动角加速度α
(9)

式中:ω为转动角速度;M为排放的高压气体与外流气体作用在泄压门表面产生的力矩,其根据CFD稳态仿真计算得到;J为泄压门绕铰链转动的转动惯量[19]Mf为泄压门转动时的阻力矩,即
(10)

其中:c为泄压门转动阻力系数;ρ为排放气体密度;l为泄压门弦长;b为泄压门宽度。
2 CFD稳态仿真计算 2.1 几何模型及网格生成 飞机发动机短舱泄压门实际应用的结构示意如图 2所示。本文考虑实际泄压门的结构及尺寸,并分析计算域大小对泄压门出口流动结构的影响,采用图 3所示几何结构模型进行CFD稳态仿真计算。该模型上部是一个尺寸为85cm×85cm×95cm的高压室,以模拟短舱内部引气管道泄漏后的高压区域,下部280cm×150cm×665cm矩形自由流动区域模拟飞行时短舱外界高速气流,且上下部之间存在3mm间距来模拟短舱和泄压门壁厚,泄压门纵横比为1,尺寸为25cm×25cm的矩形,其中泄压门开启方式为泄压门铰链与来流方向垂直。考虑到泄压门表面边界层需要加密及泄压门出口附近流动的复杂结构,使用ICEM CFD划分得到高质量的结构化网格,如图 4所示。由于结构对称,因此计算使用对称模型,其在满足要求的情况下大大减少计算量,模型网格数量约为460万。
图 2 泄压门外形和结构示意图 Fig. 2 Schematic diagram of PRD shape and structure
图选项




图 3 泄压门几何模型 Fig. 3 Geometry model of PRD
图选项




图 4 网格划分 Fig. 4 Mesh generation
图选项




2.2 计算条件及边界条件 在外界自由流马赫数为0.7,短舱内部压力分别为0.10、0.12、0.14和0.16MPa下,对泄压门开启角度分别为10°、20°、30°、40°和50°时进行计算。由于Realizable k-ε湍流双方程模型处理强流线弯曲流动,尤其对旋转均匀剪切流、边界层流、二次流的模拟更加精确,因此本文计算选用Realizable k-ε湍流双方程模型进行计算及与试验数据对比验证。
下部自由流动区域设为压力进口和压力出口,自由流入口总压设为101.3kPa,通过改变自由流静压调节来流马赫数,来流入口总温为300K,上部高压室入口为压力入口。
2.3 CFD计算验证 为验证CFD计算的正确性,采用上述建模方法及计算方法对NACA TN4007报告的试验装置进行建模计算[2]。将计算结果与NACA TN4007报告中的试验数据进行对比,结果如图 5所示,误差分析如图 6所示。结果显示本文计算结果半
图 5 计算结果与试验数据对比 Fig. 5 Comparison of calculation and test data
图选项




图 6 计算结果与试验数据误差分析 Fig. 6 Error analysis of calculation and test data
图选项




数误差低于5%,最大误差不超过20%,这表明所建立模型和计算方法的正确性。
压力比为
(11)

式中:pe为短舱内部总压;p为短舱外部自由流总压。
排放系数为
(12)

式中:为通过泄压门出口的质量流量;ρ为自由流空气密度;U为自由流速度;Aeff为有效出口面积,即泄压门开启时最小几何流动面积。
2.4 CFD稳态仿真计算结果 泄压门排放质量流量、流量系数CD与所受力矩M随泄压门开启角度和舱内压力变化的计算结果分别如图 7~图 9所示(马赫数为0.7)。
图 7 排放质量流量随开启角度和舱内压力的变化 Fig. 7 Discharge mass flow rate varies with opening angle and plenum compartment pressure
图选项




图 8 流量系数随开启角度和舱内压力的变化 Fig. 8 Discharge coefficient varies with opening angle and plenum compartment pressure
图选项




图 9 力矩随开启角度和舱内压力的变化 Fig. 9 Moment varies with opening angle and plenum compartment pressure
图选项




3 短舱泄压过程瞬态计算结果 计算和分析中认为马赫数为0.7,高压引气管路压力为0.4MPa,舱内压力为0.10MPa,泄压门面积为0.0625m2,纵横比为1,泄压门开启方式为泄压门铰链与来流方向垂直。
3.1 泄压门开启阈值对泄压过程的影响 将泄压门最大开启角度定为50°,对泄压门开启舱内压力阈值分别为0.16、0.15、0.14MPa进行计算,得到舱内压力及泄压门开启角度随时间变化分别如图 10图 11所示。
图 10 不同开启阈值下舱内压力变化对比 Fig. 10 Comparison of plenum compartment pressure changes under different opening thresholds
图选项




图 11 不同开启阈值下开启角度变化对比 Fig. 11 Comparison of opening angle changes under different opening thresholds
图选项




图 10图 11可知,初始舱内压力为0.10MPa,当高压引气管路发生大面积泄漏后,短舱内部压力迅速上升,当舱内压力达到阈值0.14、0.15、0.16MPa时,泄压门开启,随后在3.8s时刻左右,舱内压力降至0.1MPa左右,期间由于舱内压力降低,泄压门力矩平衡角不断减小,即泄压门开启角度降低,同时高压舱内通过泄压门排放的气体质量流量减小,导致舱内压力有所升高,泄压门力矩平衡角也升高,泄压门排放质量流量增加,舱内压力再次降低。因此泄压门在舱内压力和外部自由流的作用下,发生往复摆动直至达到平衡状态,到达平衡阶段后,由于泄压门在往复摆动下排放的气体质量流量低于稳定在平衡角时的质量流量,因此舱内压力有所回升,最终稳定在0.102MPa左右。
对不同开启阈值下舱内压力及泄压门开启角度随时间变化计算结果分析可知,泄压门开启阈值的改变主要影响泄压门初始阶段,随着开启阈值的降低,泄压门到达平衡阶段所需时间减小,但开启阈值的改变不影响平衡阶段的舱内压力和往复摆动角度。
3.2 泄压门最大开启角度对泄压过程的影响 将泄压门开启舱内阈值定为0.16MPa,对泄压门最大开启角度分别为30°、40°和50°这3种情况进行计算,得到舱内压力及泄压门开启角度随时间变化如图 12图 13所示。
图 12 不同最大开启角度下舱内压力变化对比 Fig. 12 Comparison of plenum compartment pressure changes under different maximum opening angles
图选项




图 13 不同最大开启角度下开启角度变化对比 Fig. 13 Comparison of PRD opening angle changes under different maximum opening angles
图选项




根据图 12图 13所示计算结果可知,适当降低泄压门最大开启角度,如由50°降低至0°,可有效减小泄压门往复摆动角度,而对泄压门初始阶段舱内压力下降速率及平衡阶段舱内压力基本无影响,平衡阶段舱内压力稳定在0.102MPa左右;但过多的降低最大开启角度,如降低至30°,由于该角度小于泄压门力矩平衡角,因此泄压门在高压室排放气体及外界气流作用下保持在最大开启角度即30°,在该最大开启角度下,初始阶段舱内压力下降速率降低,且平衡阶段舱内压力升高至0.109MPa。
4 结论 建立了短舱泄压过程零维瞬态仿真数学模型,并通过CFD稳态仿真计算得到零维瞬态仿真数学模型所需流量系数CD和力矩M。对泄压门开启舱内压力阈值、最大开启角度对短舱泄压过程的影响进行仿真计算,研究显示:
1) 所建立的零维瞬态仿真数学模型可有效分析泄压时舱内压力及泄压门开启角度随时间变化关系,高压引气管路泄漏会使短舱内部压力迅速升高,而泄压门泄压过程可降低舱内压力从而避免破坏短舱结构。
2) 泄压初始阶段,舱内压力较高,此时泄压门力矩平衡角很大,因此泄压门达到最大开启角度;而随着泄压过程的进行,舱内压力逐渐降低并趋于某一值附近,当泄压门力矩平衡角低于最大开启角度时,泄压门会在平衡角附近往复摆动,舱内压力也会出现微小波动。
3) 降低泄压门开启舱内压力阈值,会影响泄压初始阶段舱内压力变化,使泄压过程到达平衡状态所需时间减小,但对平衡阶段基本无影响。
4) 适当降低泄压门最大开启角度,可有效减小泄压门平衡阶段往复摆动角度,且对泄压初始阶段泄压速率及平衡阶段舱内压力影响很小;而过多地降低最大开启角度导致最大开启角度低于泄压平衡角时,会大大降低泄压速率,且会提高平衡阶段舱内压力。

参考文献
[1] 中国民用航空局.中国民用航空规章第25部运输类飞机适航标准: CCAR-25-R3[S].北京: 中国民用航空局, 2001.
Civil Aviation Administration of China.Chinese civil aviation regulations Part 25 airworthiness standards for transport category aircraft: CCAR-25-R3[S]. Beijing: Civil Aviation Administration of China, 2001(in Chinese).
[2] VICK A R. An investigation of discharge and thrust characteristics of flapped outlets for stream Mach numbers from 0.40 to 1.30: NACA TN4007[R]. Washington, D.C.: NACA, 1957.
[3] PRATT P R, WATTERSON J K, BENARD E. Computational and experimental studies of pressure relief doors in ventilated nacelle compartments[J]. Investigative Ophthalmology & Visual Science, 2003, 28(10): 1678-1686.
[4] PRATT P R, WATTERSON J K, BENARD E, et al.Performance of a flapped duct exhausting into a compressible external flow[C]//CD-ROM Proceedings of 24th International Congress of the Aeronautical Sciences.Yokohama: Optimage Ltd., 2004, 1: 1-9.
[5] BENARD E, WATTERSON J K, GAULT R, et al. Review and experimental survey of flapped exhaust performance[J]. Journal of Aircraft, 2008, 45(1): 349-352. DOI:10.2514/1.34238
[6] VEDESHKIN G, DUBOVITSKIY A, BONDARENKO D, et al.Experimental investigations of hydraulic devices performance in aviation engine compartment[C]//28th Congress of the International Council of the Aeronautical Sciences 2012.Brisbane: Curran Associates, Inc., 2013, 2: 1692-1700.
[7] SCHOTT T. Computational analysis of aircraft pressure relief doors[D]. Colorado: Colorado State University, 2016.
[8] 郁成德. 增压舱突然泄压载荷计算[J]. 民用飞机设计与研究, 1997(2): 43-49.
YU C D. Calculation of pressurized cabin pressure relief load[J]. Civil Aircraft Design & Research, 1997(2): 43-49. (in Chinese)
[9] 刘华源, 屠毅. 民用飞机泄压载荷影响因素研究[J]. 科技视界, 2016(16): 30-31.
LIU H Y, TU Y. Numerical simulation of decompression in pressurized cabin of civil aircraft[J]. Science & Technology Vision, 2016(16): 30-31. DOI:10.3969/j.issn.2095-2457.2016.16.016 (in Chinese)
[10] 赵建军, 丁建完, 周凡利, 等. Modelica语言及其多领域统一建模与仿真机理[J]. 系统仿真学报, 2006, 18(2): 570-573.
ZHAO J J, DING J W, ZHOU F L, et al. Modelica and its mechanism of multi-domain unified modeling and simulation[J]. Journal of System Simulation, 2006, 18(2): 570-573. (in Chinese)
[11] TILLER M. Introduction to physical modeling with Modelica[M]. Boston: Kluwer Academic, 2001.
[12] LOVERA M, PULECCHI T.Object-oriented modelling for spacecraft dynamics: A case study[C]//Proceedings of the 2006 IEEE Conference on Computer Aided Control Systems Design.Piscataway, NJ: IEEE Press, 2006: 1898-1903.
[13] CASELLA F, LOVERA M.High-accuracy orbital dynamics simulation through keplerian and equinoctial parameters[C]//Proceedings of the 6th International Modelica Conference.Bielefeld: The Modelica Association, 2008, 2: 505-514.
[14] 张宝坤, 赵建军, 刘伟. 关于飞机液压负载功率系统优化设计研究[J]. 计算机仿真, 2017, 34(5): 82-87.
ZHANG B K, ZHAO J J, LIU W. Research on aircraft hydraulic load power system optimization design[J]. Computer Simulation, 2017, 34(5): 82-87. DOI:10.3969/j.issn.1006-9348.2017.05.018 (in Chinese)
[15] 李志为, 赵洪山. 基于Modelica语言的电力系统建模与仿真[J]. 华东电力, 2012(3): 425-428.
LI Z W, ZHAO H S. Modeling and simulation of power system based on Modelica[J]. East China Electric Power, 2012(3): 425-428. (in Chinese)
[16] 程雷, 秦东晨, 王耀凯, 等. 基于Modelica的纯电动客车建模仿真研究[J]. 汽车技术, 2017(8): 43-48.
CHENG L, QING D C, WANG Y K, et al. Modeling and simulation of pure electric bus based on Modelica[J]. Automobile Technology, 2017(8): 43-48. DOI:10.3969/j.issn.1000-3703.2017.08.008 (in Chinese)
[17] RUBIO M, URQUIA A, GONZáLEZ L, et al.FuelCellLib-a modelica library for modeling of fuel cells[C]//Proceedings of the 4th International Modelica Conference.Hamburg: The Modelica Association, 2005, 1: 75-83.
[18] 孟亦飞, 蒋军成. 化工装置泄漏扩散定量风险分析[J]. 石油化工高等学校学报, 2008, 21(4): 50-54.
MENG Y F, JIANG J C. Calculation of high-pressure gas tank leakage parameters[J]. Industrial Safety and Environmental Protection, 2008, 21(4): 50-54. DOI:10.3969/j.issn.1006-396X.2008.04.013 (in Chinese)
[19] 范钦珊. 理论力学[M]. 北京: 高等教育出版社, 2000: 264-265.
FAN Q S. Theoretical mechanics[M]. Beijing: Higher Education Press, 2000: 264-265. (in Chinese)


闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滃繘鍩€椤掍胶鈻撻柡鍛█閵嗕礁鈻庨幘鍐插敤濡炪倖鎸鹃崑鐔兼偘閵夆晜鈷戦柛锔诲幖閸斿銇勯妸銉﹀櫧濠㈣娲樼换婵嗩潩椤撶姴骞嶉梻浣告啞閹稿棝宕ㄩ鐙€鍋ч梻鍌欑劍婵炲﹪寮ㄩ柆宥呭瀭闁割偅娲栨闂佸憡娲﹂崹鎵不濞戙垺鐓曢柟鎹愬皺閸斿秹鏌涚€f柨鍠氬〒濠氭煏閸繄绠抽柛鎺撳閳ь剚顔栭崰鏍ㄦ櫠鎼淬劌绠查柕蹇曞Л閺€浠嬫倵閿濆簼绨介柛鏃撶畱椤啴濡堕崱妤冪懆闁诲孩鍑归崜娑氬垝婵犳艾唯闁挎棁妗ㄧ花濠氭⒑閸濆嫬鏆婇柛瀣崌閺屾稒鎯旈垾铏瘣闂佷紮绲块崗妯讳繆閻戣棄唯闁靛繆鍓濋弶鍛婁繆閻愵亜鈧牕顫忔繝姘仱闁哄倸绨遍弸鏃€淇婇娑氭菇濞存粍绮撻弻銊╁棘閸喒鎸冮梺闈涙椤ㄥ﹤顫忔繝姘<婵﹩鍏橀崑鎾绘倻閼恒儱鈧潡鏌ㄩ弮鍫熸殰闁稿鎸剧划顓炩槈濡娅ч梺娲诲幗閻熲晠寮婚悢鍏煎€绘慨妤€妫欓悾鐑芥⒑缁嬪灝顒㈡い銊ユ婵$敻宕熼姘棟闂佸壊鐓堥崰鎺楀箰閸愵喗鈷戦柛娑樷看濞堟洜鈧厜鍋撻柟闂寸缁犳牗淇婇妶鍌氫壕闂佸疇妫勯ˇ顖炲煝鎼达絺鍋撻敐搴″缂佹劖顨婂缁樻媴閸濄儻绱炵紓渚囧櫘閸ㄦ媽鐏嬮梺鍛婂姦閸犳牠鎷戦悢鍝ョ闁瑰瓨鐟ラ悘鈺呭船椤栫偞鈷戦梻鍫熺〒缁犳岸鏌涢幘瀵哥疄闁诡喚鏁婚弫鍐焵椤掑嫬鐓橀柟杈鹃檮閸婄兘鏌熺紒妯虹瑲闁稿⿴鍨堕幃妤呭礂婢跺﹣澹曢梻浣哥秺濡法绮堟笟鈧幏鎴︽偄閸忚偐鍘梺鍓插亝缁诲秴危閸濄儳纾奸柣娆愮懃濞诧箓鎮¢弴鐔翠簻妞ゆ挾鍠庨悘銉╂煛鐎n剙鏋戠紒缁樼洴瀹曠厧鈹戦崼婵堝幗婵犳鍠栭敃銊モ枍閿濆洦顫曢柟鐑樺殾閻斿吋鍋傞幖瀛樕戠€氭盯姊婚崒娆掑厡閺嬵亞绱掗妸锔姐仢鐎规洘鍔曡灃闁告劑鍔岄悘濠傗攽閻愬弶顥為柛鏃€娲滃▎銏ゆ倷閻戞ḿ鍘甸梻渚囧弿缁犳垶鏅堕悧鍫涗簻闁哄啠鍋撻悽顖椻偓鎰佹綎婵炲樊浜濋崵鍐煃閸︻厼浜鹃悗姘洴濮婃椽宕ㄦ繝鍐ㄩ瀺闂佺儵鏅╅崹鍫曟偘椤旂晫绡€闁稿本顨嗛弬鈧梺璇插嚱缂嶅棝宕戦崱娑樺偍濞寸姴顑嗛埛鎴犵磽娴e厜妫ㄦい蹇撳閸ゆ洟鏌ら幖浣规锭缂佸墎鍋ら弻娑㈠即閵娿儱绠伴梺绋款儐閹搁箖骞夐幘顔肩妞ゆ帒鍋嗗Σ浼存⒒娴g懓顕滄繛鎻掔箻瀹曡绂掔€n亝鐎梺瑙勫婢ф宕愭搴f/闁绘鐓鍛洸濡わ絽鍟悡銉︾節闂堟稒顥㈡い搴㈩殔闇夋繝濠傚暙閳锋梻绱掓潏銊ユ诞妤犵偛顦遍埀顒婄秵閸撴稖鈪甸梻鍌欑閹碱偊鎯夋總绋跨獥闁归偊鍏楃紓姘剁叓閸ャ劍鐓熼柛瀣嚇閺屾盯骞囬妸锔界彟闂侀€炲苯澧紒澶嬫尦閳ユ棃宕橀鍢壯囨煕閳╁厾顏堝汲濡ゅ懏鈷戠痪顓炴噺閻濐亪鏌熼悷鐗堝濞e洤锕獮姗€顢欓懖鈺婂敽闂備浇顫夐幆宀勫储娴犲纾介柣銏犳啞閳锋垿鏌熼鍡楀椤╀即姊虹粙娆惧剰婵☆偅绻冩穱濠勨偓娑欋缚缁♀偓闂佺ǹ鏈〃鍡涘棘閳ь剟姊绘担铏瑰笡闁挎洍鏅犲畷鎴﹀礋椤掑偆娲告俊銈忕到閸燁垶鍩涢幋锔界厱婵炴垶锕崝鐔兼煃閽樺妯€闁哄矉绲鹃獮濠囨煕閺冣偓閸ㄧ敻顢氶敐澶婅摕闁靛鍠楅弲銏ゆ⒑閸涘﹥澶勯柛鎾寸懇閸┾偓妞ゆ巻鍋撻柣鏍с偢瀵鏁愭径濠勭杸濡炪倖鎸鹃崑鐔虹矈閻戣姤鈷戦柟鎯板Г閺佽鲸鎱ㄦ繝鍜佹綈缂佸矁椴哥换婵嬪礋椤忓懎濯伴梻浣呵归張顒勬嚌妤e喛缍栭柛銉墯閳锋垿鏌涘┑鍡楊伀闁绘帟娉曠槐鎺旂磼濡偐鐣甸梺浼欑秮閺€杈╃紦娴犲绀堥柛娆忣槹濞呭洭姊绘笟鈧ḿ褏鎹㈤幒鎾村弿閻庨潧鎽滄稉宥夋煙濞堝灝鏋ょ痪鍙ョ矙閺屾稓浠﹂崜褎鍣梺鍛婃煥缁夌敻濡甸崟顖毼╅柕澶涚畱濞堟鏌﹀Ο鑽ょ疄婵﹤顭峰畷濂告偄閹巻鍋撻幒妤佺厸闁糕槅鍙冨顕€鏌熸笟鍨妞ゎ偅绮撳畷鍗炍旈埀顒佸鎼达絿纾藉ù锝囨嚀閺佸墽绱掗煫顓犵煓婵犫偓娓氣偓濮婃椽骞愭惔锝囩暤闁诲孩鍑归崹鍫曘€佸Δ鍛亜閻犱礁鐏濈紞濠囧箖閳╁啯鍎熼柕蹇曞У閻忓孩绻濆▓鍨灈闁挎洏鍎遍—鍐寠婢跺本娈鹃梺闈涒康婵″洨寮ч埀顒勬⒑缁嬫寧婀扮紒顔奸叄楠炲﹪宕卞Ο鑲╃槇缂佸墽澧楄摫妞ゎ偄锕弻娑氣偓锝庝簼閸d粙鏌熼獮鍨伈鐎规洖銈告俊鐤槻缂佷緤绠撳娲捶椤撶儐鏆┑鐘灪閿曘垽寮荤€n喖鐐婃い鎺嶈兌閸樻悂姊洪幖鐐插姉闁哄懏鐩鎼佸箣閻愮數顔曢梺鍛婁緱閸犳碍鏅堕鍌滅<缂備焦岣块埊鏇熺箾閻撳海绠荤€规洘绮忛ˇ瀵告偖閿濆棛绡€闁汇垽娼ф禒婊堟煙闁垮鐏╃紒杈╁仦閹峰懘宕妷锔筋啎闂備胶鍋ㄩ崕鏌ュ几婵傜ǹ閱囨い蹇撶墛閻撴洘銇勯幇鈺佲偓鏇㈠几鎼淬劍鐓冪憸婊堝礈濞戙垹鏋佸┑鐘宠壘閽冪喖鏌ㄥ┑鍡╂Ц妞ゎ偄鎳橀弻锝呂熼崫鍕€庣紓渚囧枤閺佽顫忓ú顏勭闁绘劖绁撮崑鎾诲箛閺夎法锛涢梺鐟板⒔缁垶鍩涢幒鎳ㄥ綊鏁愰崼顐g秷闂佺ǹ顑囨繛鈧柡灞剧洴瀵剛鎹勯妸鎰╁€濋弻鐔肩嵁閸喚浼堥悗瑙勬礈閸犳牠銆佸鈧幃娆撴嚑椤戝灝鏋堥梻鍌欐祰瀹曞灚鎱ㄩ弶鎳ㄦ椽濡堕崪浣告濡炪倖甯掔€氼剛鐚惧澶嬬厱閻忕偟铏庡▓鏂棵瑰⿰鍫㈢暫闁哄被鍔岄埞鎴﹀幢濞戞墎鍋撳Δ鈧…鑳槺闁告濞婂濠氬Ω閵夈垺顫嶉梺鎯ф禋閸嬪嫰顢旈敓锟�
547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁哄苯绉烽¨渚€鏌涢幘璺烘灈鐎殿喚绮换婵嬪炊閵婏附鐝冲┑鐘灱濞夋盯鏁冮敃鍌涘仾闁搞儺鍓氶埛鎴︽偡濞嗗繐顏╃紒鈧崘鈹夸簻闁哄洤妫楅幊鎰版儗閸℃稒鐓曢柟鑸妽閺夊搫霉濠婂嫮鐭掗柣鎿冨亰瀹曞爼濡搁敃鈧棄宥咁渻閵堝啫鍔滅紒顔芥崌瀵鏁愭径濠勵啋闁诲酣娼ч幉锟犲礆濞戞ǚ鏀芥い鏃傘€嬮弨缁樹繆閻愯埖顥夐柣锝呭槻铻栭柛娑卞幘椤ρ囨⒑閸忚偐銈撮柡鍛洴瀹曠敻骞掑Δ浣叉嫽婵炶揪绲介幉锟犲箟閹间焦鐓曢柨婵嗗暙閸旓妇鈧娲橀崹鍨暦閻旂⒈鏁嶆繛鎴灻奸幃锝夋⒒娴h櫣甯涢柛銊ュ悑閹便劑濡舵径濠勬煣闂佸綊妫块悞锕傛偂閵夆晜鐓熼柡鍥╁仜閳ь剙婀遍埀顒佺啲閹凤拷1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熼柨婵嗩槸椤懘鏌曡箛濠冩珕婵絽鐭傚铏圭矙濞嗘儳鍓遍梺鍦嚀濞层倝鎮鹃悿顖樹汗闁圭儤绻冮弲婵嬫⒑閹稿海绠撴繛璇х畵椤㈡ɑ绻濆顓涙嫽婵炴挻鍩冮崑鎾绘煃瑜滈崜娑㈠磻濞戙垺鍤愭い鏍ㄧ⊕濞呯娀鏌涘▎蹇fФ濞存粍绮嶉妵鍕箛閳轰胶鍔村┑鈥冲级濡炰粙寮诲☉銏″亹閻犲泧鍐х矗婵$偑鍊栭幐鎼佸触鐎n亶鍤楅柛鏇ㄥ墰缁♀偓闂佸憡鍔﹂崢楣冨矗閹达附鈷掗柛灞剧懅缁愭棃鏌嶈閸撴盯宕戝☉銏″殣妞ゆ牗绋掑▍鐘绘煙缂併垹鏋熼柣鎾寸洴閹﹢鎮欓惂鏄忣潐閺呭爼鎳犻钘変壕闁割煈鍋呯欢鏌ユ倵濮樼厧娅嶉柛鈹惧亾濡炪倖甯掗敃锔剧矓闂堟耽鐟扳堪閸曨厾鐓夐梺鎸庣箘閸嬬偤骞嗛弮鍫濈參闁逞屽墴瀵劍绂掔€n偆鍘介梺褰掑亰閸ㄤ即鎯冮崫鍕电唵鐟滃酣鎯勯鐐茶摕婵炴垯鍨规儫闂侀潧锛忛崒婵囶€楅梻鍌欐缁鳖喚寰婇崸妤€绀傛慨妞诲亾鐎殿噮鍋婇獮妯肩磼濡桨姹楅梻浣藉亹閳峰牓宕滈敃鈧嵄濞寸厧鐡ㄩ悡鐔兼煟閺傛寧鎲搁柣顓烇功缁辨帞绱掑Ο铏诡儌闂佸憡甯楃敮鎺楀煝鎼淬劌绠荤€规洖娲ら埀顒傚仱濮婃椽宕橀崣澶嬪創闂佸摜鍠嶉崡鎶藉极瀹ュ應鍫柛鏇ㄥ幘閻﹀牓姊洪棃娑㈢崪缂佹彃澧藉☉鍨偅閸愨晝鍙嗛梺鍝勬祩娴滎亜顬婇鈧弻锟犲川椤愩垹濮﹀┑顔硷功缁垶骞忛崨鏉戝窛濠电姴鍊瑰▓姗€姊洪悡搴d粚闁搞儯鍔庨崢杈ㄧ節閻㈤潧孝闁哥喓澧楅弲鑸垫綇閳哄啰锛濋梺绋挎湰缁嬫帒鐣峰畝鍕厵缂佸灏呴弨鑽ょ磼閺冨倸鏋涢柛鈺嬬節瀹曟帒鈽夋潏顭戞闂佽姘﹂~澶娒洪敂鐣岊洸婵犻潧顑呯粻顖炴煕濞戝崬鐏¢柛鐘叉閺屾盯寮撮妸銉ョ閻炴碍鐟╁濠氬磼濮橆兘鍋撴搴g焼濞达綁娼婚懓鍧楁⒑椤掆偓缁夋挳宕掗妸褎鍠愰柡鍐ㄧ墕缁犳牗绻涘顔荤盎閹喖姊虹€圭姵銆冮柤鍐茬埣椤㈡瑩宕堕浣叉嫼闂佸憡鎸昏ぐ鍐╃濠靛洨绠鹃柛娆忣槺婢х敻鏌熼鎯т槐鐎规洖缍婇、鏇㈡偐鏉堚晝娉块梻鍌欒兌閹虫捇顢氶銏犵;婵炴垯鍩勯弫瀣節婵犲倹鍣界痪鍓у帶闇夐柨婵嗘噺閹牊銇勯敐鍛仮闁哄本娲熷畷鎯邦槻妞ゅ浚鍘介妵鍕閳╁啰顦版繝娈垮枓閸嬫捇姊虹€圭姵銆冪紒鈧担鍦彾濠㈣埖鍔栭埛鎺懨归敐鍥ㄥ殌妞ゆ洘绮庣槐鎺斺偓锝庡亜濞搭喚鈧娲樼换鍌炲煝鎼淬劌绠婚悹楦挎閵堬箓姊虹拠鎻掑毐缂傚秴妫濆畷鎶筋敋閳ь剙顕i銏╁悑闁糕剝鐟ч惁鍫熺節閻㈤潧孝闁稿﹨顫夐崚濠囧礂闂傚绠氶梺鍝勮閸庢煡寮潏鈺冪<缂備焦岣跨粻鐐烘煙椤旇崵鐭欐俊顐㈠暙閳藉螖娴gǹ顎忛梻鍌氬€烽悞锕傚箖閸洖绀夌€光偓閳ь剛妲愰悙瀵哥瘈闁稿被鍊曞▓銊ヮ渻閵堝棗濮傞柛濠冾殜閹苯鈻庨幇顏嗙畾濡炪倖鍔戦崐鏍汲閳哄懏鐓曢幖瀛樼☉閳ь剚顨婇獮鎴﹀閻橆偅鏂€闁诲函缍嗘禍鐐哄磹閻愮儤鈷戦梻鍫熻儐瑜版帒纾块柡灞诲労閺佸洦绻涘顔荤凹闁抽攱鍨块弻娑樷攽閸℃浼屽┑鈥冲级閹倿寮婚敐鍛傛梹鎷呴搹鍦帨闁诲氦顫夊ú姗€宕归崸妤冨祦闁圭儤鍤﹂弮鍫濈劦妞ゆ帒瀚憴锔炬喐閻楀牆绗氶柣鎾寸洴閺屾盯骞囬埡浣割瀷婵犫拃鍕创闁哄矉缍侀獮妯虹暦閸モ晩鍟嬮梻浣告惈閺堫剟鎯勯鐐叉槬闁告洦鍨扮粈鍐煃閸濆嫬鏋ゆ俊鑼厴濮婄粯鎷呴崨闈涙贡閹广垽骞囬悧鍫濆壎闂佸吋绁撮弲婊堬綖閺囥垺鐓欓柣鎴烇供濞堛垽鏌℃担闈╄含闁哄本绋栫粻娑㈠箼閸愨敩锔界箾鐎涙ḿ鐭掔紒鐘崇墵楠炲啫煤椤忓嫮顔婇悗骞垮劚濡盯濡堕弶娆炬富闁靛牆楠告禍婊勩亜閿旂偓鏆柣娑卞櫍瀹曞崬鈽夊Ο娲绘闂佸湱鍘ч悺銊╁箰婵犳熬缍栫€广儱顦伴埛鎴︽煕閿旇骞栭柛鏂款儔閺屾盯濡搁妸锔惧涧缂備焦姊婚崰鏍ь嚕閹绢喗鍋勯柧蹇氼嚃閸熷酣姊洪崫鍕垫Ц闁绘妫欓弲鑸电鐎n亞鐣烘繝闈涘€搁幉锟犳偂濞戙垺鐓曟繝濞惧亾缂佲偓娴e湱顩叉繝濠傜墕绾偓闂備緡鍓欑粔鐢告偂閺囩喆浜滈柟閭﹀枛瀛濋梺鍛婃⒐缁捇寮婚敐澶婄閻庢稒岣块ˇ浼存⒑閸濆嫮鐏遍柛鐘崇墵楠炲啫饪伴崗鍓у枔閹风娀寮婚妷褉鍋撳ú顏呪拻濞达絽鎳欒ぐ鎺濇晞闁搞儯鍔庣粻楣冩煃瑜滈崜鐔煎蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垶绮庨悿鈧梺鍝勫暙閸婂爼鍩€椤掍礁绗氱紒缁樼洴瀹曢亶骞囬鍌欐偅婵$偑鍊ら崑鍛崲閸曨垰绠查柛鏇ㄥ€嬪ú顏嶆晜闁告粌鍟伴懜鐟扳攽閻樿尙妫勯柡澶婄氨閸嬫捁顦寸€垫澘锕ョ粋鎺斺偓锝庝簽閺屽牆顪冮妶鍡欏⒈闁稿绋撶划濠氭偐閾忣偄寮垮┑鈽嗗灥椤曆囥€傞幎鑺ョ厱閻庯綆鍋呭畷宀勬煟濞戝崬娅嶇€规洖缍婇、娆撴偂鎼搭喗缍撻梻鍌氬€风粈渚€骞楀⿰鍫濈獥闁规儳顕粻楣冩煃瑜滈崜娑㈠焵椤掑喚娼愭繛鍙夛耿瀹曞綊宕稿Δ鍐ㄧウ濠碘槅鍨伴惃鐑藉磻閹炬枼妲堟繛鍜佸弾娴滎亪銆侀幘璇茬缂備焦菤閹疯櫣绱撻崒娆戝妽闁挎岸鏌h箛銉х暤闁哄被鍔岄~婵嬫嚋閻㈤潧甯楅柣鐔哥矋缁挸鐣峰⿰鍐f闁靛繒濮烽敍娑㈡⒑缂佹ɑ鈷掗柛妯犲洦鍊块柛顭戝亖娴滄粓鏌熼悜妯虹仴闁哄鍊栫换娑㈠礂閻撳骸顫掗梺鍝勭灱閸犳牠銆佸▎鎾村殐闁宠桨鑳堕崢浠嬫煟鎼淬値娼愭繛鍙壝叅闁绘梻顑曢埀顑跨閳藉濮€閳ユ枼鍋撻悜鑺ョ厾缁炬澘宕晶顔尖攽椤曞棝妾ǎ鍥э躬閹瑩顢旈崟銊ヤ壕闁哄稁鍘奸崹鍌氣攽閸屾簱鍦閸喒鏀介柣妯虹枃婢规ḿ绱掗埀顒勫磼閻愭潙鈧爼鏌i幇顓熺凡閻庢艾楠搁湁婵犲﹤瀚惌鎺楁煛瀹€鈧崰鏍嵁閸℃凹妲鹃梺鍦櫕婵炩偓闁哄本绋掔换婵嬪礃閵娿儺娼氶梻浣告惈閻ジ宕伴弽顓溾偓浣糕枎閹炬潙娈愰梺瀹犳〃閼冲爼宕㈡禒瀣厽閹兼番鍊ゅḿ鎰箾閼碱剙鏋戠紒鍌氱Ч瀹曞ジ寮撮悩鑼偊闂備焦鎮堕崕娲礈濞嗘劕鍔旈梻鍌欑窔濞佳囁囬銏犵9闁哄洠鎳炴径濠庢僵妞ゆ垼濮ら弬鈧梻浣虹帛閸旀﹢宕洪弽顑句汗鐟滃繒妲愰幒妤佸殤妞ゆ巻鍋撳ù婊冨⒔缁辨帡宕掑姣櫻囨煙瀹曞洤浠卞┑锛勬焿椤т焦绻涢弶鎴濐伃婵﹥妞介獮鎰償閵忣澁绱╅梻浣呵归鍡涘箲閸ヮ灛娑欐媴閻熸壆绐為梺褰掑亰閸橀箖宕㈤柆宥嗩棅妞ゆ劑鍨烘径鍕箾閸欏澧遍柡渚囧櫍瀹曞ジ寮撮悢鍝勫箥闂備胶枪缁绘劙宕ョ€n喖纾归柟鎵閻撴盯鎮橀悙鍨珪閸熺ǹ顪冮妵鍗炲€荤粣鏃堟煛鐏炲墽顬肩紒鐘崇洴瀵噣宕掑Δ渚囨綌闂傚倸鍊稿ú銈壦囬悽绋胯摕婵炴垯鍨瑰敮濡炪倖姊婚崢褔锝為埡鍐<闁绘劦鍓欓崝銈夋煏閸喐鍊愮€殿喖顭峰鎾偄閾忓湱妲囬梻濠庡亜濞诧箑煤濠婂牆姹查柣妯烘▕濞撳鏌曢崼婵囶棡缂佲偓婢跺⿴娓婚悗娑櫳戦崐鎰殽閻愯尙澧﹀┑鈩冩倐婵¢攱鎯旈敐鍛亖缂備緡鍠楅悷鈺佺暦瑜版帩鏁婄痪鎷岄哺缂嶅秹姊婚崒姘偓鐑芥嚄閼哥數浠氭俊鐐€栭崹闈浳涘┑瀣祦闁归偊鍘剧弧鈧┑顔斤供閸撴盯顢欓崱娑欌拺闁告稑锕g欢閬嶆煕閵娾晙鎲剧€规洑鍗冲畷鍗炩槈濞嗘垵骞堥梻浣告惈濞层垽宕濈仦鐐珷濞寸厧鐡ㄩ悡娑㈡煕閳╁厾顏堝传閻戞ɑ鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洦鍋婂畷鐔碱敃閿涘嫬绗¢梻浣筋嚙鐎涒晠顢欓弽顓炵獥婵°倕鎳庣壕鍨攽閸屾簱瑙勵攰闂備礁婀辨晶妤€顭垮Ο鑲╃焼闁告劏鏂傛禍婊堢叓閸ャ劍灏版い銉уТ椤法鎹勯崫鍕典痪婵烇絽娲ら敃顏呬繆閹壆鐤€闁哄洨鍋涢悡鍌炴⒒娴e憡鎲搁柛锝冨劦瀹曞湱鎹勯搹瑙勬闂佺鎻梽鍕磻閹邦喚纾藉ù锝堢柈缂傛岸鏌涘鈧禍璺侯潖濞差亜妫橀柕澶涢檮閻濇棃姊洪崫銉ユ珡闁稿鎳橀獮鍫ュΩ閳轰胶鍔﹀銈嗗笒鐎氼參鍩涢幋鐘电<閻庯綆鍋掗崕銉╂煕鎼淬垹濮嶉柡宀€鍠撶划娆忊枎閸撗冩倯婵°倗濮烽崑娑氭崲濡櫣鏆﹂柕濞р偓閸嬫挸鈽夊▍顓т簼缁傛帡骞嗚濞撳鏌曢崼婵囶棤濠⒀屽墴閺屻倝鎮烽弶搴撴寖缂備緡鍠栭…鐑界嵁鐎n喗鏅滈悷娆欑稻鐎氳棄鈹戦悙鑸靛涧缂佽弓绮欓獮澶愭晸閻樿尙鐣鹃梺鍓插亖閸庢煡鎮¢弴鐐╂斀闁绘ɑ褰冮鎰版煕閿旇骞栫€殿喗鐓″缁樼瑹閳ь剙岣胯閹广垽宕奸妷銉э紮闂佸搫娲㈤崹娲磹閸ф鐓曟い顓熷灥娴滄牕霉濠婂嫮鐭掗柡宀€鍠撻埀顒傛暩鏋ù鐘崇矋閵囧嫰寮撮悢铏圭厒缂備浇椴哥敮妤呭箯閸涱垱鍠嗛柛鏇ㄥ幖閸ゆ帗淇婇悙顏勨偓銈夊矗閳ь剚绻涙径瀣妤犵偛顦甸獮姗€顢欓懖鈺婃Ч婵$偑鍊栧濠氬磻閹惧墎妫柣鎰靛墮閳绘洟鏌熼绛嬫當闁崇粯鎹囧畷褰掝敊閻e奔澹曢梻鍌欐祰濡椼劎绮堟笟鈧垾锕傛倻閽樺)銉ッ归敐鍥┿€婃俊鎻掔墛娣囧﹪顢涘☉姘辩厒闂佸摜濮撮柊锝夊箖妤e啫鐒洪柛鎰硶閻绻涙潏鍓у埌濠㈢懓锕よ灋婵犲﹤瀚弧鈧梺姹囧灲濞佳勭閳哄懏鐓欐繛鑼额唺缁ㄧ晫绱掓潏鈺佷槐闁糕斁鍋撳銈嗗笂闂勫秵绂嶅⿰鍕╀簻闁规壋鏅涢悞鐑樹繆椤栨浜鹃梻鍌欐祰椤曟牠宕抽婊勫床婵犻潧顑呴弰銉╂煃瑜滈崜姘跺Φ閸曨垰绠抽柟瀛樼箥娴犻箖姊洪幎鑺ユ暠閻㈩垽绻濆璇测槈濮橆偅鍕冮梺纭咁潐閸旀洟藟濠靛鈷戦梺顐ゅ仜閼活垶宕㈤崫銉х<妞ゆ梻鏅幊鍥煏閸℃洜顦﹂柍璇查叄楠炲洭顢欓崜褎顫岄梻鍌欑閹测€趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆戭槮婵犫偓闁秴纾婚柟鍓х箑缂傛碍绻涢崱妯诲濠㈣泛饪村ḿ鈺呮煠閸濄儲鏆╅柛姗€浜堕弻锝嗘償椤栨粎校闂佺ǹ顑呴幊鎰閸涘﹤顕遍悗娑欋缚閸樼敻鎮楅悷鏉款伀濠⒀勵殜瀹曠敻宕堕埞鎯т壕閻熸瑥瀚粈鍫ユ煕韫囨棑鑰块柕鍡曠铻i悶娑掑墲閺佺娀姊虹拠鈥崇€婚柛灞惧嚬濡粍绻濋悽闈浶ラ柡浣告啞閹便劑寮堕幊銊︽そ閺佸啴宕掑鎲嬬串闂備礁澹婇悡鍫ュ磻閸℃瑧涓嶅Δ锝呭暞閻撴瑩鎮楀☉娆嬬細缂佺姵锕㈤弻锛勨偓锝庝簻閺嗙喓绱掓潏銊ユ诞闁糕斁鍋撳銈嗗笒閸婄敻宕戦幘缁樻櫜閹肩补鍓濋悘宥夋⒑缂佹ɑ灏柛鐔跺嵆楠炲绮欐惔鎾崇墯闂佸壊鍋呯换鍕囪閳规垿鎮欓弶鎴犱桓濠殿喗菧閸旀垿骞嗗畝鍕耿婵$偞娲栫紞濠囧极閹版澘閱囬柣鏃傝ˉ閸嬫捇宕橀鐣屽幗闂佸湱鍎ら崺濠囩叕椤掑嫭鐓涚€光偓閳ь剟宕版惔銊ョ厺闁规崘顕ч崹鍌涖亜閺冨倹娅曞ù婊勫姍濮婄粯鎷呴崨闈涚秺椤㈡牠宕卞☉妯碱唶闂佸綊妫跨粈渚€鎮¢垾鎰佺唵閻犲搫鎼ˇ顒勬煕鐎n偅宕岀€规洜鍏橀、姗€鎮欓幇鈺佸姕闁靛洤瀚伴弫鍌炲垂椤旇偐銈繝娈垮枛閿曘儱顪冩禒瀣摕闁告稑鐡ㄩ崐鐑芥煠閼圭増纭炬い蹇e弮濮婃椽宕ㄦ繛鎺濅邯楠炲鏁嶉崟顒€搴婂┑鐐村灟閸ㄥ湱鐥閺岀喓鈧數枪娴犳粓鏌$€n剙孝妞ゎ亜鍟存俊鍫曞礃閵娧傜棯闂備焦瀵уú蹇涘垂瑜版帗鍋╅柣鎴犵摂閺佸啴鏌ㄩ弴妤€浜鹃柛鐑嗗灦閹嘲饪伴崘顏嗕紘缂備緡鍣崢钘夘嚗閸曨剛绠鹃柣鎰靛墯閺夋悂姊洪崷顓炲妺濠电偛锕ら悾鐑藉箛閺夎法顔掔紓鍌欑劍閿氶柍褜鍓欏ḿ锟犲蓟閵娾晛绫嶉柍褜鍓欓悾宄拔熺紒妯哄伎闂佹儳娴氶崑鍛村矗韫囨柧绻嗘い鏍ㄦ皑娴犮垽鏌i幘鏉戝闁哄矉缍侀獮妯虹暦閸モ晩鍟嬮梻浣告惈閺堫剟鎯勯鐐叉槬闁告洦鍨扮粈鍐煃閸濆嫬鏋ゆ俊鑼跺煐娣囧﹪鎮欓鍕ㄥ亾瑜忛幏瀣晲閸℃洜绠氶梺鎼炲労閸撴瑩鎮為崹顐犱簻闁瑰搫妫楁禍鎯р攽閻橆偄浜鹃柡澶婄墑閸斿孩绂掑顓濈箚闁绘劦浜滈埀顑惧€濆畷銏$附缁嬪灝绨ラ梺鍝勮閸庢煡宕戦埡鍛厽闁硅揪绲借闂佸搫鎳忛悡锟犲蓟濞戙垹唯妞ゆ牜鍋為宥夋⒑閸涘﹥绀€闁哥喐娼欓~蹇涙惞閸︻厾鐓撻梺鍦圭€涒晠骞忛崡鐑嗘富闁靛牆鍟俊濂告煙閸愯尙绠崇紒顔碱儏椤撳吋寰勬繝鍕毎婵$偑鍊ら崗姗€鍩€椤掆偓绾绢厾绮斿ú顏呯厸濞达絿鎳撴慨宥団偓瑙勬磸閸旀垿銆佸▎鎾崇闁稿繗鍋愰弳顓㈡⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介幃銏ゆ惞闁稓鐟濋梻浣告惈缁嬩線宕㈡總鍛婂珔闁绘柨鍚嬮悡銉︾節闂堟稒锛嶆俊鎻掔秺閺屾稒绻濋崟顐㈠箣闂佸搫鏈粙鎴﹀煝鎼淬倗鐤€闁挎繂妫岄弸鏃€绻濈喊妯活潑闁稿鎳樺畷褰掑垂椤曞懏缍庡┑鐐叉▕娴滄繈鎮炴繝姘厽闁归偊鍨伴拕濂告倵濮橆偄宓嗛柡灞剧☉铻g紓浣姑埀顒佸姍閺屸€崇暆鐎n剛袦濡ょ姷鍋炵敮锟犲箖濞嗘挻鍋ㄩ柛顭戝亝椤旀捇姊虹拠鎻掝劉妞ゆ梹鐗犲畷鎶筋敋閳ь剙鐣峰⿰鍫熷亜濡炲瀛╁▓楣冩⒑閸︻厼鍔嬮柛鈺佺墕宀e潡鍩¢崨顔惧弳濠电娀娼уΛ娆撍夐悩缁樼厱婵炲棗绻愰弳鐐电磼缂佹ḿ绠撻柍缁樻崌瀹曞綊顢欓悾灞煎闂傚倷鑳堕、濠傗枍閺囥垹绠伴柛婵勫劚瀵煡姊绘担铏瑰笡閺嬵亝銇勯弴鍡楁噹椤ユ艾鈹戦悩宕囶暡闁绘挻鐟╅弻鐔碱敍閸℃鍣洪柟鎻掑悑缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠傤嚕鐠囨祴妲堟俊顖炴敱椤秴鈹戦绛嬫當闁绘锕顐c偅閸愨斁鎷洪梻鍌氱墐閺呮繄绮欐繝姘厵妞ゆ梻鍘ч埀顒€鐏濋锝嗙節濮橆厽娅滈梺绯曞墲閿氶柛鏂挎嚇濮婃椽妫冨☉姘鳖唺婵犳鍠楅幐鍐差嚕缁嬪簱鏋庨柟鎯ь嚟閸樹粙姊虹紒妯忣亪宕幐搴㈠弿濠㈣埖鍔栭悡鏇㈡煟濡櫣锛嶅褏鏁搁埀顒冾潐濞叉ê顪冩禒瀣槬闁逞屽墯閵囧嫰骞掑澶嬵€栨繛瀛樼矋缁捇寮婚悢琛″亾閻㈢櫥瑙勭濠婂嫨浜滈柡鍥╁枔閻鏌曢崶褍顏柡浣稿暣瀹曟帡濡堕崱鈺傤棝缂傚倸鍊峰ù鍥ㄣ仈閹间礁绠伴柟闂寸贰閺佸洤鈹戦崒婧撶懓顪冮挊澹濆綊鏁愰崵鍊燁潐缁旂喐鎯旈妸锔规嫽婵炶揪绲肩拃锕傚绩閻楀牏绠鹃柛娑卞枟缁€瀣煙椤斻劌娲﹂崑鎰版偣閸ヮ亜鐨洪柣銈呮喘濮婅櫣绱掑Ο鏇熷灥椤啴宕稿Δ鈧弸渚€鏌涢埄鍐姇闁绘挻娲熼弻鐔兼焽閿曗偓閺嬫稑霉濠婂牏鐣洪柡宀嬬畵楠炲鈹戦幇顓夈劎绱撴担浠嬪摵闁圭懓娲ら悾鐑藉箳閹存梹鐎婚梺鐟扮摠缁诲倿鈥栨径鎰拻濞达絽鎲¢崯鐐烘煕閺冣偓濞茬喖鍨鹃敃鍌涘€婚柣锝呰嫰缁侊箓妫呴銏″缂佸甯″鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋呯粙鍫ュ磻閹惧瓨濯撮柤鍙夌箖濡啫鐣烽妸鈺婃晩闂傚倸顕惄搴ㄦ⒒閸屾瑧鍔嶉柛搴$-閹广垽骞囬濠呪偓鍧楁⒑椤掆偓缁夌敻宕戦崒鐐村€甸柨婵嗛閺嬬喖鏌嶉柨瀣伌闁诡喖鍢查埢搴ょ疀閹垮啩鐥梻浣呵圭€涒晠銆冩繝鍥ц摕婵炴垯鍨规儫闂侀潧锛忓鍥╊槸婵犵數濮伴崹濂革綖婢跺⊕娲偄閻撳孩鐎梺鐟板⒔缁垶寮查幖浣圭叆闁绘洖鍊圭€氾拷
相关话题/计算 过程 高压 质量 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 非结构重叠网格显式装配算法*
    在计算流体力学中,重叠网格技术是用于模拟复杂流动的重要途径之一。相较于Steger等[1]提出的结构网格,非结构网格没有网格节点的结构性限制,具有更好的灵活性,对复杂构型的适应能力更强。与结构重叠网格不同,Nakahashi和Gumiya[2]提出的非结构重叠网格技术没有显式的挖洞过程,得到广泛研究 ...
    本站小编 Free考研考试 2021-12-25
  • 基于异步卷积分解与分流结构的单阶段检测器*
    目标检测作为计算机视觉领域的关键技术,一直是具有挑战性的研究热点。Viola和Jones[1]于21世纪初提出了Viola-Jones算法首次在计算资源有限的情况下实现了实时的人脸检测。2005年,Dalal与Triggs[2]提出的HOG(HistogramofOrientedGradient)行 ...
    本站小编 Free考研考试 2021-12-25
  • 基于飞行数据的无人机平飞动作质量评价模型*
    随着军用无人机大量装备部队以及民用无人机的广泛应用,专业无人机操控手的需求缺口较大,加强对无人机操控手的基础训练,客观合理的评价操控手的飞行技能水平成为无人机发展应用亟待解决的关键问题[1]。对飞机驾驶人员飞行技能的评价主要有主观法和客观法两种:主观法一般由专家观察飞行过程后对驾驶人员进行打分,如K ...
    本站小编 Free考研考试 2021-12-25
  • 基于深度学习的无人机数据链信噪比估计算法*
    地-空数据链作为无人机系统的重要组成部分,发挥着发送上行遥控指令和回传遥测侦察信息等重要作用[1]。信噪比(Signal-to-NoiseRatio,SNR)是评价无人机通信系统信道环境和通信质量的重要指标,精确的信噪比估计既可以为无人机数据链提供功率控制、信道分配所需要的信息,又可以促使数据链系统 ...
    本站小编 Free考研考试 2021-12-25
  • 共用支承-转子结构系统振动耦合特性分析*
    先进高推重比涡轴发动机多采用涡轮级间共用承力框架结构设计,同时支承燃气发生器转子和动力涡轮转子后支点,转子结构和承力结构之间的振动响应相互影响,形成转子-共用支承-转子结构系统(简称共用支承-转子结构系统)振动耦合。近年来,涡轮级间共用承力框架在先进航空发动机承力系统中广为采用,是发动机减重、提高涡 ...
    本站小编 Free考研考试 2021-12-25
  • 静电传感器测量固体颗粒质量流量实验研究*
    在高温高压等极端条件下,航空发动机气路中的机械部件容易磨损并发生故障,对气路中的固体颗粒质量流量进行实时监测,有助于获得气路部件的状态信息[1-3]。此外,航空发动机排放物中固体颗粒含量反映了发动机内燃料的成分及其燃烧情况,检测颗粒物生成量对监控发动机工作性能提供重要的信息。一部分航空发动机气路和尾 ...
    本站小编 Free考研考试 2021-12-25
  • 融合高斯过程回归的UKF估计方法*
    高精度位置姿态测量系统(PositionandOrientationSystem,POS)本质是一个SINS/GNSS非线性组合系统,其通过非线性滤波方法,如扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)、无迹卡尔曼滤波(UnscentedKalmanFilter,UKF),融合 ...
    本站小编 Free考研考试 2021-12-25
  • 三维点阵结构等效热分析与优化方法*
    三维点阵结构,亦被称为“类桁架结构”[1],因具有轻质、高比刚度、高比强度的机械性能和主动散热/阻热、减震、吸能等功能特性,在航空、航天等领域受到广泛的关注。而三维点阵结构在研制与应用过程中,涉及到的关键问题包括制造工艺与性能分析方法等,对此,国内外****展开了一系列的研究。由于传统工艺的限制,点 ...
    本站小编 Free考研考试 2021-12-25
  • 端部带质量和弹簧约束悬臂梁振动响应的解析解*
    运载火箭在垂直转运过程和发射前会受到地面风产生的静态和动态载荷作用,增加防风减载结构后,火箭根部的弯矩载荷可以大大降低。此时,火箭的受力状态与受到横向分布载荷作用悬臂梁的振动响应类似,可以利用等截面悬臂梁的振动响应解析研究结果来指导火箭的受力分析和结构设计。连续体振动响应的解析解是否能得到,主要取决 ...
    本站小编 Free考研考试 2021-12-25
  • 进气道结构对固体冲压发动机补燃室燃烧及内壁流场的影响*
    固体冲压发动机具有结构简单、比冲高、质量轻等优点[1],是现代火箭技术中应用非常广泛的动力装置。在固体冲压发动机的研究过程中,补燃室综合性能的研究对提高固体冲压发动机性能具有重要意义。为研究补燃室综合性能,1989年,Cherng等[2]利用SIMPLE算法研究了不同进气道角度和进气道位置对补燃室内 ...
    本站小编 Free考研考试 2021-12-25