删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于PCA和WPSVM的航天器电特性识别方法

本站小编 Free考研考试/2021-12-25

?航天器电子负载系统是开放的非线性时变系统,系统结构复杂且不确定[1],内部负载之间常见的信号有滚动、俯仰、偏航等[2, 3].这些信号的突变时常发生,因此在系统发生故障时,引起事故的原因将会交织在一起.如果没有可靠的信息来源以及分析方法,仅靠假设和推测,难以判断准确的故障起因[4, 5, 6, 7].北京航空航天大学魏传锋和王浚院士等结合航天器热故障的特点和人工智能的思想,提出了适合航天器故障诊断的推理机和知识库的构造方法,并建立了航天器热故障诊断专家系统[8, 9].然而,航天器电特性监测系统识别过程中存在测试数据量大、特征维数高、样本少[10]、计算速度慢和识别率低等问题,这些问题亟待解决.
考虑到支持向量机(Support Vector Machine,SVM)[11, 12]在小样本条件下具有良好的学习能力,能较好地实现对非线性样本数据的学习、分类.应用于电特性识别过程中具有独特优势.实际诊断时,如果电特性数据输入量数目过多,训练复杂度及过拟合度都会大大增加[12],对于复杂高维特征系统,大量的数据会影响样本训练和分类诊断的效率,并导致识别准确率下降,如何从高维状态特征中获得敏感特征成为在线识别的瓶颈之一[13].主成分分析方法(Principal Component Analysis,PCA)[14, 15]是一种新的数据分析和处理方法,倾向于局部特征的抽取,具有存储容量小、计算简单等特点,已经在图形处理、人类自然语言的处理研究中得到广泛应用.
本文提出采用PCA与加权近似支持向量机(Weighted Proximal Support Vector Machine,WPSVM)相结合的航天器电特性在线故障诊断方法.通过PCA对SVM的样本数据进行预处理,然后通过加权WPSVM的方法实现在线分类.解决在线识别过程中高维特征选取困难和计算速度较慢的问题,改善在线识别效果,仿真和实测试验均表明该方法的优越性.
1 航天器电特性在线识别方法航天器电特性在线识别问题的前提是对测试电特性信号进行平移变换之后与标准电特性进行对照,根据误差的大小,实现测量信号的在线识别.标准数据与测试数据如图 1所示.
图 1 测试数据与标准数据Fig. 1 Test data and standard data
图选项


测试数据与标准数据的最小化误差函数如下:
式中:DtDs分别为测试数据与标准数据;W为映射变换;B为平移.采用求取范数的方式来量化误差,通过对测试数据与标准数据进行映射变换的方式获取两者之间的误差,用于识别.
PCA算法的实质是通过变换的方式实现数据降维,降低计算量,加快计算速度,避免出现过拟合.SVM分类器则是通过映射变换的方式,实现在线式识别,提高识别率.
2 PCA算法2.1 PCA算法原理流程PCA是统计学中分析数据的一种方法,其目的是通过一个特殊的向量矩阵,将数据从原来的高维空间投影到一个低维的向量空间中,并且降维后保存了数据的主要信息,从而使数据更易于处理,本文提出的时间序列PCA算法如图 2所示.
图 2 PCA方法流程图Fig. 2 Flow chart of the PCA method
图选项


2.2 航天器电特性识别中的PCA算法将航天器电特性数据序列中的每一段电特性表示成向量的形式:
式中:Xk=(xk,1,xk,2,…,xk,r)(1≤kn)为第k个样本,r为该样本的采样点数;n为总样本个数.进而得出协方差阵为
式中:X为均值向量;Sr×r的矩阵,计算S的特征值[λ1,λ2,…,λn](其中λ1λ2≥…≥λn)以及对应的特征向量T=[u1,u2,…,un],这些特征向量就是航天器电特性数据的正交基,特征向量所对应的特征值越大,它在重构时的贡献也越大,贡献度可以通过归一化的方式来计算,特征值λk所对应的特征向量的贡献度Pk可以量化为
因此,对那些特征值很小的特征向量可以忽略.这样可应用前N个主分量来重建模型,此处设定阈值P,前N个分量的贡献度之和大于P,即,所以重构后的电特性数据矩阵为
3 支持向量机3.1 SVM一般原理SVM的核心思想是构建一个最大间隔的分类超平面.使两类样本分布于分类面两边,标准SVM是对线性可分的两类样本.寻找一个既能使两类样本正确分开,又保证分类间隔最大的最优分类面.对于线性可分的情况,最优超平面的求解问题归结为求解式(6)的约束优化问题.当样本非线性时,可通过核函数映射的方式将样本投影使其线性可分,常用的核函数包括多项式核函数,线性核函数以及径向基核函数.而为了使识别结果最优,将最大化超平面内训练样本间的间隔,其形式为
式中:δm为超平面间隔;xi为所获取的样本特征;yi为样本所属类别;l为总类别数量,即样本分为l类;ωb分别为超平面的法向量与位移.
3.2 基于PCA的WPSVM[7, 8]分类器基于SVM的电特性识别分为样本训练和电特性识别两个阶段,上述过程若直接引入高维电特性数据会影响分类器的分类速度和精度.基于PCA的电特性是被通过对原始数据进行特征提取和数据降维,用降维后的样本特征训练SVM分类器.从而在在线电特性识别时,提高识别精度并且极大地提高计算速度.
同时针对航天器电特性数据蕴含噪声较多、识别率低的问题,提出采用WPSVM来解决噪声较多的问题,有效提高识别率,与标准SVM相比,WPSVM将优化问题转化为
式中:Ci为正负类分别引入不同的惩罚因子;ξi为松弛变量;d为样本数量;yixi的所属类别标识;si为每个训练样本引入一个可调节的权值,用以表示该样本对于某一类的贡献性大小,0≤si≤1,则si表示该样本点属于一类的可能性,而(1-si)表示该样本点属于另一类的可能性.
为求解上述最优化问题,引入Lagrange定理.将问题转化为
式中:α=(α1,α2,…,αd)为Lagrange乘子.根据Wolfe对偶的定义,就是先求L(ω,b,ξ,α)关于ωbξα的极小值,由极值条件,得



引入δi=Cisi并求解式(9)~式(12),可得
将式(13)代入式(8)中求取对偶问题的最优解α*=(α1*,α2*,…,αd*),选择α*(α*>0)的一个正分量,则原始问题的解可表示为

式中:K(xi,xj)表示核函数,用于将输入空间映射到相应的高维特征空间.引入不同的核函数可以实现采用不同的标准对相似性和相似程度进行估价.最终的决策函数为
4 实验数据与结果4.1 实验数据实验数据来源于航天器电子负载的典型电特性实验数据,所使用的原始数据为每一段1000个数据点的波形,如图 3所示.实验可简要概括如下:①采用基于PCA的特征提取方法对数据进行降维;②使用WPSVM分类器对测试集进行分类识别并计算准确度.总体流程如图 4所示.
图 3 典型电特性实验数据Fig. 3 Typical electrical characteristics experimental data
图选项



图 4 电特性识别总体流程Fig. 4 Total flow chart of electrical characteristics identification
图选项


4.2 使用多类WPSVM分类器的电特性识别实验WPSVM为两类分类器,在电特性识别过程中存在大量不同的电特性,只是用单一的两类分类器难以解决识别问题.因此提取多类WPSVM分类器用于在线电特性识别.多分类的指导思想为将多类问题分解为一系列WPSVM可直接求解的两类问题,基于这一系列WPSVM求解结果得出最终判别结果.分别采用一类对余类法与一对一方法进行实验对比.
一类对余类法的步骤是构造n个两类分类器(设共有n个类别),其中第i个分类器把第i类同余下的各类划分开,训练时第i个分类器取训练集中第i类为正类,其余类别点为负类进行训练.判别时,测试电特性数据分别经过n个分类器共得到n个输出值F(x)=sgn(ω*·x+b*),若只有一个+1出现,则其对应类别为测试电特性数据类别;实际情况下总是有误差的,若输出不只一个+1(不只一类声称它属于自己),或者没有一个输出为+1(即没有一个类声称它属于自己),则比较ω*·x+b*输出值,最大者对应类别为测试电特性数据的类别.
一对一方法在每两类间训练一个分类器,因此对于存在n类的电特性问题,将有n(n-1)/2个分类器.当对测试电特性数据进行分类时,每个分类器都对其类别进行判断.并为相应的类别“投上一票”,最后得票最多的类别即作为该测试电特性数据的类别.
4.3 实验结果首先,采用不同的样本数分别使用PCA特征提取方法与不使用PCA特征提取方法对同一个分类器进行训练.对运算时间进行记录,运算时间为PCA降维运算时间与分类器训练时间的总和,由表 1可以看出,通过使用PCA特征提取方法进行降维,使得计算速度明显加快.
表 1 算法所需时间对比Table 1 Comparison of time between different algorithms
s
特征提取方法样本数量/个
1050100500
PCA降维0.122920.3134880.5321091.020358
无PCA降维1.731843.8332237.58316719.364252

表选项


利用实验数据,采用随机抽取样本的方式对改进的WPSVM算法的准确率进行计算,分别随机产生10、50、100个电特性数据样本.如图 5所示,实验表明,WPSVM较传统识别算法具有更高的准确性.其中采用一对一方法的WPSVM分类器具有最高的分类准确度.
图 5 算法准确率对比Fig. 5 Comparison of algorithm accuracy
图选项


之后,从真实实验数据中随机抽取100个电特性数据样本,通过使用不同的多类分类方法对WPSVM和SVM的性能进行了比较,对运算时间进行记录,运算时间为PCA降维运算时间与分类器训练时间的总和,如表 2所示.实验表明,运用一类对余类法其训练时间较一对一方法更为迅速,而WPSVM较传统SVM训练时间基本一致,再改进的基础上时间复杂度并没有增加.
表 2 训练所需时间对比Table 2 Comparison between training time
s
特征提取
方法
SVM分类器WPSVM分类器
一类对余类一对一一类对余类一对一
PCA降维15.292733.43534516.434533.254353
无PCA降维168.184742.67543157.642445.34323

表选项


5 结 论本文利用数理统计的方法,提出了一种新的电特性识别解决方法.主要创新与结论有:
1) 在电特性识别过程中引入PCA特征提取方法,实现了对航天器电特性数据的降维,从而减少识别过程中的计算量,有效地提高了效率.
2) 在实现降维特征提取之后,采用WPSVM算法对电特性数据进行识别,提高了电特性识别的精度.
3) 对多种经典算法进行了比较,获得了较为完整的结论,其中WPSVM减少了计算时间,进一步增强了分类器的性能.
对于这个模型,进一步的工作包括:
1) 要解决异常或叠加事件难以识别的敏感问题.
2) 尽量减小由于数据的分散性所带来的对孤立点的敏感程度.
3) 减少人工的干预,同时又不能增加太多的计算复杂度,在不同规模的数据集上测试该方法的有效性.最终构造并实现更高性能的分类器.
致谢 感谢北京航空航天大学、西安交通大学与中国空间研究院在研究过程中的支持与帮助.
参考文献
[1]Steven R S. System identification technology modeling for nonintrusive load diagnostics[D].Cambridge: Massachusetts Institute of Technology, 2000.
Click to display the text
[2]Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(1): 28-44.
Click to display the text
[3]Chew H G, Bogner R E, Lim C C.Dual ν-support vector machine with error rate and training size biasing[C]//IEEE International Conference Acoustics Speech Signal Processing.Piscataway, NJ: IEEE Press, 2001, 2: 1269-1272.
Click to display the text
[4]杜林, 刘伟明, 王有元.基于CPLD的电网过电压变频数据采集卡设计[J].高电压技术, 2008, 34(8): 1589-1593. Du L, Liu W M, Wang Y Y.Data acquisition card with variable sampling speed for monitoring overvoltage based on CPLD[J].High Voltage Engineering, 2008, 34(8): 1589-1593(in Chinese).
Cited By in Cnki (14)
[5]吴昊, 肖先勇.小波能量谱和神经元网络法识别雷击与短路故障[J].高电压技术, 2007, 33(10): 189-193. Wu H, Xiao X Y.Lightning strike and fault identification by the wavelet energy spectrum and neural network method[J].High Voltage Engineering, 2007, 33(10): 189-193(in Chinese).
Cited By in Cnki (29)
[6]Huang J S, Negnevitsky M, Nguyen D T.A neural-fuzzy classifier for recognition of power quality disturbances[J].IEEE Transactions on Power Delivery, 2002, 17(2): 609-616.
Click to display the text
[7]王钢, 李海峰, 赵建仓, 等.基于小波多尺度分析的输电线路直击雷暂态识别[J].中国电机工程学报, 2004, 24(4): 358-364. Wang G, Li H F, Zhao J C, et al.Identification of transients on transmission lines caused by direct lighting strokes based on multiresolution signal decomposition[J].Proceedings of the CSEE, 2004, 24(4): 358-364(in Chinese).
Cited By in Cnki (106)
[8]Chien S, Sherwood R, Tran D, et al.Using autonomy flight software to improve science return on Earth Observing One[J].Journal of Aerospace Computing, Information, and Communication, 2005, 2(4): 196-216.
Click to display the text
[9]李可, 刘旺开, 王浚.专家-模糊PID在低速风洞风速控制系统中的应用[J].北京航空航天大学学报, 2007, 33(12): 1387-1390. Li K, Liu W K, Wang J.Parameters self-tuning fuzzy-PID combined with expert control on wind velocity control system of wind tunnels at home[J].?Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(12): 1387-1390(in Chinese).
Click to display the text
[10]Li K, Liu W K, Wang J, et al.An intelligent control method for a large multi-parameter environmental simulation cabin[J].Chinese Journal of Aeronautics, 2013, 26(6): 1360-1369.
Click to display the text
[11]李可, 庞丽萍, 刘旺开, 等. 环境模拟舱体的建模仿真及控制方法[J].北京航空航天大学学报, 2007, 33(5): 535-538. Li K, Pang L P, Liu W K, et al.System model simulation andcontrol method used in environmental simulation chambers[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 535-538(in Chinese).
Click to display the text
[12]Huang S H, Kothamasu R, Shiralkar Y C, et al.Prediction of plastic preform temperature profile and modeling perspective[J].International Journal of Manufacturing Science and Technology, 2003, 4(2): 56-83.
Click to display the text
[13]邓乃扬, 田英杰. 数据挖掘中的新方法——支持向量机[M].北京: 科学出版社, 2004: 189-193. Deng N Y, Tian Y J.A new method of data mining: SVM[M].Beijing: Science Press, 2004: 189-193(in Chinese).
[14]Witten I H, Frank E.Data mining: Practical machine learning tools and techniques[M].2nd ed.San Francisco: Morgan Kaufmann, 2005: 36-39.
[15]Zhu X, Ye J, Zhang X.A fixed-point nonlinear PCA algorithm for blind source separation[J].Neurocomputing, 2005, 69(1): 264-272.
Click to display the text


相关话题/数据 计算 实验 测试 系统

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于动力学递推算法的绳系卫星系统刚柔耦合多体模型
    空间绳系卫星系统(TetheredSatelliteSystem,TSS)自从作为一种新式的太空应用手段提出以来,已经在诸多领域,例如动量交换变轨[1]、编队飞行[2]、空间碎片处理[3]、空间发电[4]等领域展现出一定的应用前景,因而得到了主要航天国家和学术界的广泛关注[5,6,7].空间系绳根据 ...
    本站小编 Free考研考试 2021-12-25
  • 宽高比对微小通道空气流动换热特性影响实验
    ?为了进一步提高航空发动机整体性能,涡轮进口前温度越来越高.这就导致了涡轮高温部件,如涡轮叶片,将承受较大的热应力和热载荷,这将严重降低涡轮部件的可靠性和使用寿命.如今,根据美国IHPTET(IntegratedHighPerformanceTurbineEngineTechnology)计划可知, ...
    本站小编 Free考研考试 2021-12-25
  • 航天器测试需求描述及其自动生成
    ?航天器包括卫星和飞船,其作为典型的安全苛刻系统,系统功能一旦失效将引起财产、生命等的重大损失以及环境可能遭到严重破坏[1,2].因此,其是否可信[3,4,5,6]已成为广泛关注的问题.可信性主要通过测试获取的数据进行评估和验证[7,8].随着我国航天事业飞速发展,特别是随着二代导航、军用遥感、军用 ...
    本站小编 Free考研考试 2021-12-25
  • 线控制动系统踏板模拟器与制动感觉评价
    电动汽车电-液复合制动系统中,若保留传统的液压系统结构,则由于电制动(再生制动)的加入而使得踏板制动力无法正确反映实际制动力的大小,从而造成踏板的“制动感觉”不良[1].线控制动(BBW)具有响应速度快、制动性能好、布置灵活等特点,是实现电动汽车再生制动的最佳制动形式,受到国外许多汽车厂家和科研机构 ...
    本站小编 Free考研考试 2021-12-25
  • 非线性气动弹性系统反演自适应控制
    在一定的飞行条件下,非线性气动弹性系统会出现极限环振荡、混沌等不稳定现象[1],这些不稳定现象对飞行器的结构安全构成了很大威胁.文献[2]对气动弹性颤振分析与控制方法进行了很好的总结.目前对非线性颤振主动控制问题的研究主要针对于多项式非线性[3,4,5].文献[6,7]研究了迟滞非线性因素对二元机翼 ...
    本站小编 Free考研考试 2021-12-25
  • 基于眼动数据的网络搜索行为预测方法
    网络已经成为人们获取信息的主要来源,网络搜索是用户在网上获取信息的重要手段.理解用户如何进行网络搜索,不但能够改进搜索引擎,而且能够帮助设计更为人性化的人机交互方式,从而提升用户体验.因此,网络搜索行为研究已经受到学术界和工业界的广泛关注,尤其是网络搜索行为的预测研究[1,2,3,4,5,6].近年 ...
    本站小编 Free考研考试 2021-12-25
  • 准光系统中椭球面反射镜面截取方法
    在气象遥感领域,微波辐射计具有常规红外和光学探测仪不具备的优势,如不受云层影响、全天候、全天时探测等.此外,由于大气及地表物体的热辐射信号落在微波波段[1],微波辐射计[2]可以通过被动接收大气以及地表物体的热辐射信号获得相关观测数据.地球静止轨道卫星微波辐射计能够实现对大气和地面的长期不间断观测, ...
    本站小编 Free考研考试 2021-12-25
  • 多因素影响下的起落架收放系统性能分析
    起落架收放系统是飞机的重要组成部分[1,2],其性能的好坏直接影响飞机的飞行安全.而频发的收放事故使得对起落架收放系统的研究极为重要[3].收放故障模式多种多样,较为常见的故障原因有系统气塞、管路堵塞、油液泄漏、结构卡滞等[4,5,6].针对这些故障原因展开系统分析,并对起落架收放性能进行评估具有重 ...
    本站小编 Free考研考试 2021-12-25
  • 高超声速气动热数值计算壁面网格准则
    近年来,高超声速临近空间飞行器迅速发展,随之带来的飞行器热防护问题日益突出,而气动热环境的准确预测对飞行器热防护系统的设计至关重要.随着数值方法和计算机硬件的迅速发展,计算流体力学(CFD)方法逐渐成为气动热环境预测的重要手段.但运用CFD方法模拟气动热环境的难点在于其精度受多种因素影响,如离散方法 ...
    本站小编 Free考研考试 2021-12-25
  • 过渡状态下材料断裂韧性的计算方法
    通常情况下材料断裂韧性被看作常数,为平面应变状态下的断裂韧性值.实际上,断裂韧性的值是随着试样厚度的变化而变化的,即断裂韧性是一个与应力状态有关的量,并不是仅与材料性质有关的常数.在一些航空技术先进国家,已经通过大量的试验给出了许多常用材料的KC-B曲线,即断裂韧性-厚度曲线,而中国基本没有建立航空 ...
    本站小编 Free考研考试 2021-12-25