删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有方向特性的X角点的亚像素检测定位

本站小编 Free考研考试/2021-12-25

在视觉测量中,为了降低对目标检测和识别的难度,出现了各种人工标记点[1, 2],其中X标记点因对比性强、易检测、易制作等优点,被广泛应用于相机标定与光学跟踪系统.如基于阵列X角点的棋盘格,被广泛应用于张正友的共面靶标相机标定法[3]中的平面靶标[4],并被集成到Matlab视觉工具包[5]和开源计算机视觉库OpenCV[6]中;Micron Tracker光学跟踪系统[7]则将X标记组合粘贴于工具上进行工具位姿的测量与跟踪.相比于基于红外光线的NDI Polaris跟踪系统,需要使用特制主动红外发光球状标记或被动反射红外小球作为检测目标,基于可见光与X角点标记的Micron Tracker视觉跟踪系统无论是相机硬件还是标记制作都具有明显的成本优势,因而已被广泛应用于手术室器械跟踪和机器人位姿跟踪.利用X角点进行相机标定或位姿测量的前提是X角点的精确检测与定位.目前已有多种方法能实现X角点的检测与亚像素定位,如OpenCV使用通用的基于灰度分布最大曲率点检测的Harris算子进行棋盘格X角点检测[8, 9, 10].针对相机标定中棋盘格图像上X角点的检测,利用X角点特征的属性,朱枫等提出基于对称方差的SV检测算子[4, 11],主要利用关于X角点对称的像素灰度值接近且X角点邻域内灰度变化显著的特征,该算法原理简单,但在某些情况下会出现误检,且环境的变化会导致阈值选取的不稳定;储珺等提出采用环形模板的角点检测算子[12],该算子利用X角点为黑白区域边界直线交点的属性,设计环形遍历模板对棋盘格图像进行遍历,通过利用遍历后图像的属性确定棋盘格角点的位置,该算法需要知道棋盘格格子的边长,然后确定环形模板的半径,对于边长变化的棋盘格或畸变的棋盘格图像会存在漏检的情况;胡海峰和侯晓微综合使用了几种算法[13],首先利用Radon变换检测棋盘格直线,然后利用Harris和Forstner算子对角点进行精确定位,该算法精确度较高但运算量大,且只适用于棋盘格角点的检测;张广军等提出利用Hessian矩阵进行X角点检测[14, 15],主要利用平滑后X角点为曲面鞍点的属性,该检测方法精度较高、算法简单,但易受非X角点的干扰.针对手术器械跟踪的X角点检测,魏军等提出的基于快速筛选的段测试检测方法[16],借鉴了FAST检测算子[17]思想和X角点的邻域灰度对称变化的属性,并利用直线相交方法进行亚像素定位,该算法运算量和检测结果易受图像纹理和噪声的影响.上述方法虽都能实现X角点的检测与定位,但都只给出了X角点的位置信息.而X角点特征不仅具有位置信息,还包含有方向信息.充分利用X角点特征提供的信息,可简化X角点立体匹配与识别的难度.如光学跟踪系统Micron Tracker,利用X角点特征的位置信息及角点连线所在向量实现模板匹配和识别.但Micron Tracker系统封闭,对于算法的普及推广不利,因而有必要对包含方向信息的X角点特征的检测定位方法进行进一步研究,以便于能在开放或自行设计的视觉系统中使用.张广军等基于Hessian矩阵的检测算法,除了能给出X角点特征的位置信息外,还能给出X角点的对称轴方向(此方向与X角点Hessian矩阵[14, 15]的特征方向一致),但其对称轴方向在实物测试中并不稳定,难以有效应用.SIFT算子[18]、SURF算子[19]除了能提供特征的位置信息外,也包含了方向信息,但SIFT与SURF算子并不是专门针对X角点特征检测,没有利用X角点特征属性,而且其方向信息在图像上比较抽象,难以适用于X角点特征的检测定位.针对X角点特征位置与方向同时定位的需要,同时考虑角点定位及定向的精确性和鲁棒性,本文提出了基于X标记点对称性计算的检测方法,即SC(Symmetry Calculation)算子.首先,分析X标记点的图像特点,在此基础上提出对称性计算的数学模型,利用此数学模型计算角点的像素位置;然后通过二次曲线拟合,实现X角点的亚像素定位.仿真试验和实际测试表明该方法在确定角点的位置和方向时,具有较高的精确度和鲁棒性,满足应用要求.1 X角点图像特征分析X标记点由4个相邻的黑白区域组成,X角点是区域块的公共点,如图 1所示.以X角点为中心,4块黑白区域形成两条边界线.为后续表述方便,在此做如下定义:按逆时针方向,根据黑白变化序列定义这2条边界线,从黑到白跳变的边界线定义为BW(Black-to-White)线,另一条从白到黑跳变的边界线为WB(White-to-Black)线.图 1中X标记点具有以下图像特征:
图 1 X角点Fig. 1 X point
图选项


① X角点是BW线和WB线的交点.② X标记点的方向可以用BW线和WB线的方向表示.③ X标记点的对称性.对其中的任意像素p,都能找到其关于X角点对称的像素,该像素与p同时位于黑块或白块.中心射影变换(或小孔成像)不保证正交性,但保证共线性质.因而在图像上,X标记点的图像在局部仍保持对称性.令BW线和WB线的像分别为lbwlwb,交点X的像为x.2 基于对称性计算的X角点检测2.1 对称性计算与像素级位置确定在位于以候选角点为中心,边长为2r的正方形窗口上,提取像素组成首尾相连的像素段,如图 2(a)所示.将图 2(a)中的BW线和WB线与像素段的4个交点,按逆时针方向分别称为ABCD台阶;令abcd分别表示折线AO1B,BO2C,CO3D,DO4A的长度.本文算法根据窗口的平行移动提取像素段,采样数据与X角点的具体方向无关.在待测试像素段上,像素的亮度在实际情况下如图 2(b)所示.设像素段由n个像素组成,记其中第i个像素为pi(i=1,2,…,n),f(pi)为pi的灰度值.由于同一区域内的像素在位置和灰度级上具有较强的一致性和相关性,不同区域内的像素存在照度不均匀、对比度不同的情况.为了保证较强的抗噪性能,并体现同一区域的整体情况,选择像素段的均值作为二值化阈值.为了降低噪声点对二值化阈值选取的影响,需先用滤波器对像素段进行预处理.通过对像素段内灰度值进行局部二值化,将pi的灰度值化为f′(pi).二值化后像素段内各个像素的灰度值如图 2(c)所示.
图 2 取像素段并确定台阶Fig. 2 Taking pixel segment and determining steps
图选项


图 2(c)中的曲线反映X角点测试像素段内存在4处灰度值变化剧烈的点,即图 2(a)中介绍的ABCD 4个台阶.通过对二值化后像素段内的相邻元素取差分Δ=f′(pi)-f′(pi-1)(i=1,2,…,n),判断Δ的绝对值是否为255,从而确定此像素段内是否存在4个台阶及它们在像素段内的像素级位置.然后求出abcd.根据X标记点图像特征中的对称性,可知对于当前窗口内的任意像素点p,若要在当前窗口内找到其关于窗口中心的对称点,4个台阶之间的距离abcd理论上应该相等.由此可得对称性计算的数学公式:
以图 2(a)中的每个像素为窗口中心计算对应的SC值,其结果如图 3所示.图中xy坐标表示像素点的二维位置,z坐标表示对应的对称性计算值.可知,窗口中心越接近X角点,其对称性计算值SC越小.所以当SC取得局部最小值时,即可确定当前窗口中心为角点位置.
图 3 图 2(a)对称性计算结果Fig. 3 Result of symmetry calculation of Fig. 2(a)
图选项


2.2 角点的亚像素位置计算及方向确定通过对称性搜索得到X角点及其对应台阶的像素级位置,为求解其亚像素级位置,采用二次曲线拟合法[20]先求此X角点4个台阶的一维亚像素位置A′,B′,C′,D′,然后利用边缘直线相交确定角点的亚像素位置.在已知台阶像素位置的前提下,只选取台阶邻近点进行二次曲线拟合可以减少计算量,避免无用点影响拟合结果.选取以台阶(假设为台阶A)为中心的5个点进行二次曲线拟合.拟合点的亮度及相邻点亮度差(梯度)如图 4(a)和图 4(b)所示.将离散的梯度值拟合为一条连续的曲线,近似为二次抛物线,如图 4(b)所示.二次抛物线的极值点即为沿该梯度方向灰度变化最大的地方,即为台阶的准确位置.
图 4 一维边缘模型Fig. 4 Model of one-dimensional edge
图选项


一个角点q(x,y)周围存在4个台阶,所以要进行4次曲线拟合,分别得到4个台阶在像素段内的一维亚像素位置A′,B′,C′,D′.因所得台阶存在于以角点像素位置为中心的边长为2r的正方形窗口上,即可利用此对应关系求出其二维的亚像素位置.假设某台阶的一维位置为m,根据m值所在范围可得其对应二维坐标为
将台阶的一维位置转至与图像相对应的二维位置时,由于其在垂直或水平方向上与候选角点的像素距离为r,所以可以通过增减r确定在此方向上的像素位置,但实际上边缘的位置存在于像素内的任何位置,为了减小在此方向上的误差,所以增加0.5个像素的偏移.一维和二维空间对应关系如图 5所示,图中r=5.据此可求得4个台阶的二维亚像素位置A″,B″,C″,D″.
图 5 一维与二维空间对应关系Fig. 5 Relationship between one- and two-dimensional spaces
图选项


由影射几何可知,X角点的亚像素位置为
式中
其中,x的齐次坐标表示;lbw,lwb为直线在图像上的齐次坐标;A″,B″,C″,D″的图像齐次坐标.在介绍X标记点的图像特征时曾说到X标记点的方向信息可以用BW线和WB线的方向表示,即lbwlwb的方向.通过求lwblbw与水平方向的夹角θ1θ2来存储角点的方向信息,X角点的方向如图 6所示.
图 6 X角点的方向Fig. 6 Direction of X-corner point
图选项



3 角点定位实验及分析为了对第2节阐述的基于对称性计算的X角点检测方法进行验证,利用Visual Studio 2008和Matlab 7.11对算法进行了编程实现.实验分为2部分:第1部分是已知各个角点理论位置及角点真实方向信息的仿真实验,通过该部分实验能较便捷精确地检验算子的精确度、抗噪性能和抗畸变性能,同时在该部分实验中使用了经典Harris算法和本文算法对相同实验图像进行对比分析.第2部分是物理实验,使用双目摄像机BumbleBee2 BB2-08S2C,在不同环境下采集实验图像,图像尺寸大小为1 024×768像素.由于不知道角点在实时采集图像中的理论位置,所以在物理实验中通过与Micron Tracker系统及Harris算法进行对比来分析SC算子的性能.Micron Tracker系统由Claron Tech公司生产,其被广泛应用于众多需要进行精确定位的场合.文献[7]指出其测量精度达到0.2 mm.实验中用圆圈标记X角点,分别用短线和长线标识lwblbw,如图 7所示.
图 7 X角点及其方向标识Fig. 7 X-corner point and its direction detected by SC detector
图选项


3.1 仿真实验为验证噪声和畸变对本文算法性能的影响,选择畸变后的仿真图像进行角点定位实验.首先利用Matlab软件对含有25个X角点的棋盘格图案进行仿射变换,得到图片仿射后各个角点的理论位置i(i=1,2,…,25)及相应lwb,lbw与水平方向的夹角对仿射后的图像加入标准差为δ的高斯噪声生成噪声图像,然后采用SC算子和集成到OpenCV中的Harris算子分别进行角点定位,记定位结果为xi(i=1,2,…,25),记SC算子求得的lwblbw的角度分别为θ1i2i.然后将畸变噪声图像的检测结果与理论值进行比较,分析噪声和畸变对算法定位和定向精度的影响,由于Harris算法不能提供角点的方向信息,所以只列出SC算子的定向结果及分析.定义
式中,σnEn分别为定位和定向误差.仿真实验结果如表 1所示,图 8为噪声标准差δ=0.24时的畸变图像定位结果.表 1 仿真实验结果 Table 1 Results of simulation experiments
参数算子噪声标准差δ
0.040.080.120.160.200.240.28
σn/像素
SC算子0.329 30.329 30.355 30.354 40.432 00.420 00.421 8
Harris0.305 40.321 00.338 70.362 20.378 00.413 2
En/(°)SC算子1.538 41.468 81.481 21.424 41.481 21.764 01.876 4

表选项


图 8 噪声标准差δ=0.24时的畸变图像定位结果Fig. 8 Result of distortion image when noise standard deviation is 0.24
图选项


SC算子和Harris算子的定位精度都会随图像噪声的加强而有所下降,当噪声标准差小于0.28时,SC算子和Harris算子的定位误差都在0.5个像素以内.两者在定位精度方面不相上下,但是Harris易受噪声的影响,误检点较多,在实际应用中会产生不必要的干扰,如图 8(b)所示.在噪声标准差为0.28时,因Harris算子误检点过多,以致无法计算精确度.而SC算子则表现出良好的抗噪性和抗畸变性.同时,由表 1可以看出,当噪声标准差小于0.28时,SC算子的定向精度也很稳定,平均误差在2°以内,稳定精确的定向功能也是SC算子的一个优势.总体来说,本文提出的算法能在保证基本不受噪声和畸变影响的同时进行精确定位及定向,满足应用中对鲁棒性能及精度的要求.3.2 物理实验物理实验分为3部分:第1部分是与Harris算法及Micron Tracker系统的定性比较实验;第2部分是检验光照亮度对算法性能影响的实验;第3部分是与Micron Tracker系统的定量比较实验.表 2 SC算子、Harris算子与Micron Tracker系统检测结果对比Table 2 Comparison between experimental results of SC detector,Harris detector and Micron Tracker system
实际角点数SC算子HarrisMicron Tracker
X角点非X角点X角点非X角点X角点非X角点
第1组9696096310440
第2组1361360136371710
第3组1361360136363850
第4组1361360136357690

表选项


第1部分的对比实验分为4组,统计结果在表 2中给出.第1组实验里放置的棋盘图案有96个X角点,黑白块的边长为20 mm,放置在距相机1 m远的地方.第2组实验里增加了一黑白块边长为30 mm,角点个数为40的棋盘格.第3组实验时,改变第2个棋盘格平面与相机平面之间的夹角.第4组实验中将第2个棋盘格进行旋转并改变2个棋盘格与相机平面之间的夹角.图 9给出了第4组棋盘格实验的结果图.由实验结果看出,Harris算法的检测结果中存在很多误检点,而Micron Tracker系统不太稳定,容易出现漏检的情况.与它们相比,本文提出的SC算子在保证基本排除非X角点的前提下全部检出了X角点.
图 9 棋盘格实验Fig. 9 Experiments of X-corner points
图选项


图 10显示了在不同光照亮度下SC算子的检测情况.光照亮度从高亮度到正常再到低亮度,都没有影响SC算子对X角点及其方向的检测.图中分别用短线和长线标出了WB线和BW线的方向.实验表明本文提出的算法对亮度改变具有一定的鲁棒性.
图 10 不同光照亮度下SC算子的检测结果Fig. 10 Results of SC detector under different light conditions
图选项


上述2部分物理实验对角点检测算法的抗噪性、抗畸变性以及对光照变化的鲁棒性做了一个定性的分析.下面通过与Micron Tracker系统的对比实验定量地分析角点检测算法的误检率、漏检率和检测精确度.实验所用图像中包括96个X角点的棋盘格图案,黑白块边长为20 mm;距离相机1 m远.为比较角点定位精度,在利用生产该摄像机的Claron Tech公司提供的源代码对其提取的左视图进行角点检测后,将导出的左视图置于SC算子中进行检测.为比较2个算法在不同条件下的检测结果,还改变了棋盘格平面和摄像机平面之间的角度.图 11所示为30°时,与Micron Tracker系统的对比实验的情形.表 3中的数据是20组实验结果的平均值.其中正检率=正确检测的角点数/实际总角点数,漏检率=漏检的角点数/实际总角点数,误检率=误检的角点数/实际总角点数.数据显示当棋盘格平面和摄像机平面之间的夹角较小时,Micron Tracker系统的漏检率较高,SC算子则几乎不存在漏检,随着角度的增加,Micron Tracker系统漏检率逐渐降低,正检率逐渐升高.SC算子则相反,当被测平面过于倾斜时,由于检测窗口的大小r不适合该情况,正检率会有所下降,出现漏检.2个算法的误检率则一直都很低,总的来说都具有较好的鲁棒性.对于更普遍的接近平行的情况,SC算法则在稳定性方面更有优势.
图 11 与Micron Tracker系统的对比实验Fig. 11 Comparative experiments with Micron Tracker
图选项


表 3 不同角度下Micron Tracker系统与SC算子的检测结果Table 3 Results of Micron Tracker system and SC detector under different conditions
夹角/(°)Micron TrackerSC算子
正检率/%漏检率/%误检率/%正检率/%漏检率/%误检率/%
031.2568.75010000
3098.051.95010000
6099.220.780.5269.5330.470.65

表选项


通过对20组实验的检测结果进行统计分析,获得2个算法的检测结果分别在x,y方向上测量差的标准差(σs)、均方根(RMS,σr)及2个结果间距离的标准差和RMS.Micron Tracker系统与SC算子检测结果间的关系如表 4所示.可以看出2个算法在精度上是不相上下的.表 4 Micron Tracker系统与SC算子检测结果间的关系Table 4 Relations between the two detectors’ test results
像素
Δx=x′-xΔy=y′-y
标准差(σs)RMS(σr)标准差(σs)RMS(σr)标准差(σs)RMS(σr)
0.174 30.191 70.164 70.180 20.110 90.263 1
注:x′—Micron Tracker系统的检测结果;x—SC算子的检测结果.

表选项



当计算Δxy或距离Dis的标准差和RMS时,分别用它们代替式(12)和式(13)中的z进行计算.与Micron Tracker系统的对比实验表明SC算子与其有相同的检测精度,满足精确定位的要求.在Intel Core i3 CPU 3.3 GHz RAM 2.0 GB的处理器上,检测一帧大小为1 024×768包含96个角点的棋盘格图像,本文算法一般需要0.187 s,Harris算法与Micron Tracker系统平均花费时间则分别为0.053 s,0.069 s.传统的Harris算法并不满足实时性要求[9, 21],因本文使用的是OpenCV中已优化的Harris,所以速度快.而Micron Tracker系统封闭,不做讨论.本文SC算子因需要利用式(3)对图像中的每个像素点计算对应的SC值,所以耗时相对较大,但在实际工程项目中,若采用适当的优化加速算法,还能大大降低本文算法的处理时间.4 讨论及分析实验发现,本文算法会因窗口大小r选取不当导致漏检,通过实验总结和分析,利用自适应法根据图片的大小及实验条件自动调节窗口的大小,以求降低漏检率.如果出现误检,则主要是因为窗口内检测到如下2种干扰情况,它们与X角点一样存在4个台阶,但是窗口内并无交点.通过对X角点和干扰情况进行分析,可以用下列条件对干扰情况进行排除:1) 若当前窗口中心的邻域内像素灰度值为黑白混合,则为X角点,若为纯黑或纯白,则为干扰情况.2) 根据前面对A,B,C,D的定义,标出各干扰情况中的A,B,C,D,如图 12所示.取ACBD上的像素点,若其邻域内像素灰度值为黑白混合,则为X角点,否则为干扰.
图 12 干扰图形Fig. 12 Interferences
图选项


对这些干扰情况进行排除,能大大降低误检率.5 结 论分析了X角点的图像特征,提出了基于对称性计算的X角点检测算法.该方法具有以下特点:1) 仅提取X角点,排除了其他类型的角点,为特征识别提供亚像素级的定位信息和准确的定向信息.2) 能有效排除非X角点的干扰.本文算法虽然在亚像素定位精度方面与其他2种经典算法相当,但在图像发生畸变并有较高噪声的情况下,本文算法仍能在基本排除非X角点的同时准确提取X角点的位置信息,并且还能提供较高精度的方向信息,在位姿测量及模板匹配中具有较高的应用价值.
参考文献
[1] Sánchez-Margallo J A, Sánchez-Margallo F M,Pagador J B,et al.Technical evaluation of a third generation optical pose tracker for motion analysis and image-guided surgery[M]//Clinical Image-Based Procedures.From Planning to Intervention.Heidelberg:Springer,2013:75-82.
[2] 王志衡,吴福朝, 王旭光.基于局部方向分布的角点检测及亚像素定位[J].软件学报,2008,19(11):2932-2942. Wang Z H,Wu F C,Wang X G.Corner detection and sub-pixel localization based on local orientation distribution[J].Journal of Software,2008,19(11):2932-2942(in Chinese).
Cited By in Cnki (26)
[3] Zhang Z Y. A flexible new technique for camera calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
Click to display the text
[4] 刘阳成,朱枫. 一种新的棋盘格图像角点检测算法[J].中国图象图形学报,2006,11(5):656-660. Liu Y C,Zhu F.A new algorithm for X-corner detection[J].Journal of Image and Graphics,2006,11(5):656-660(in Chinese)
Cited By in Cnki (69)
[5] Bouguet J Y. Camera calibration toolbox for matlab[EB/OL].California,Tex:California Institute of Technology,2009 (2013-12-02).http://www.vision.caltech.edu/bouguetj/calib_doc/.
Click to display the text
[6] Bradski G, Kaehler A.Learning OpenCV:computer vision with the OpenCV library[M].Sebastopol:O'Reilly Media,Inc.,2008:422-430.
[7] Claron Technology Inc. Micron tracker developer's manual MTC 3.6[M].Toronto:Claron Technology Inc.,2011:25-35.
[8] Harris C, Stephens M.A combined corner and edge detector[C]//Proceedings of Alvey Vision Conference.Manchester:Organising Committee AVC 88,1988,15:147-152.
Click to display the text
[9] 王崴,唐一平, 任娟莉,等.一种改进的Harris角点提取算法[J].光学精密工程,2008,16(10):1995-2001. Wang W,Tang Y P,Ren J L,et al.An improved algorithm for Harris corner detection[J].Optics and Precision Engineering,2008,16(10):1995-2001(in Chinese).
Cited By in Cnki (111)
[10] 侯建辉,林意. 自适应的Harris棋盘格角点检测算法[J].计算机工程与设计,2009,30(20):4741-4743. Hou J H,Lin Y.Adaptive Harris X-corner detection algorithm[J].Computer Engineering and Design,2009,30(20):4741-4743(in Chinese).
Cited By in Cnki (30)
[11] 郝颖明,朱枫. 摄像机在线标定中的棋盘格角点自动检测方法[J].计算机工程,2007,33(17):213-215. Hao Y M,Zhu F.Automatic X-corners detection for online camera calibration[J].Computer Engineering,2007,33(17):213-215(in Chinese).
Cited By in Cnki (15)
[12] 储珺,郭卢安政, 赵贵花.采用环形模板的棋盘格角点检测[J].光学精密工程,2013,21(1):189-196. Chu J,Guo L A Z,Zhao G H.Chessboard corner detection based on circular template[J].Optics and Precision Engineering,2013,21(1):189-196(in Chinese).
Cited By in Cnki (8)
[13] 胡海峰,侯晓微. 一种自动检测棋盘角点的新算法[J].计算机工程,2004,30(14):19-21. Hu H F,Hou X W.A new algorithm for automatically detecting chessboard corners[J].Computer Engineering,2004,30(14):19-21(in Chinese).
Cited By in Cnki (39)
[14] Chen D, Zhang G J.A new sub-pixel detector for X-corners in camera calibration targets[J].WSCG (Short Papers),2005,5:97-100.
Click to display the text
[15] 张广军. 视觉测量[M].北京:科学出版社,2008:57-61. Zhang G J.Vision measurement[M].Beijing:Science Press,2008:57-61(in Chinese).
[16] 魏军,刘达, 王田苗,等.基于段测试的X角点检测与亚像素定位[J].机器人,2011,33(1):97-101. Wei J,Liu D,Wang T M,et al.Segment test based X comer detection and sub-pixel localization[J].Robot,2011,33(1):97-101(in Chinese).
Cited By in Cnki (5)
[17] Rosten E, Porter R,Drummond T.Faster and better:a machine learning approach to corner detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(1):105- 119.
Click to display the text
[18] Lowe D G. Distinctive image features from scale-invariant key points[J].International Journal of Computer Vision,2004,60(2): 91-110.
Click to display the text
[19] Bay H, Tuytelaars T,Van Gool L.Surf:speeded up robust features[C]//Proceedings of the European Conference on Computer Vision.Heidelberg:Springer,2006:404-417.
Click to display the text
[20] 尚雅层,陈静, 田军委.高斯拟合亚像素边缘检测算法[J].计算机应用,2011,31(1):179-181. Shan Y C,Chen J,Tian J W.Sub-pixel edge detection algorithm based on Gauss[J].Journal of Computer Applications,2011,31(1): 179-181(in Chinese).
Cited By in Cnki (32)
[21] 郭永芳,于明, 孙以材.一种改进的快速角点检测方法研究[J].计算机工程与应用,2011,47(12):159-161. Guo Y F,Yu M,Sun Y C.Study on advanced rapid corner detection method[J].Computer Engineering and Application,2011,47(12):159-161(in Chinese).
Cited By in Cnki (16)


相关话题/实验 图像 系统 信息 计算

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 高超声速气动热数值计算壁面网格准则
    近年来,高超声速临近空间飞行器迅速发展,随之带来的飞行器热防护问题日益突出,而气动热环境的准确预测对飞行器热防护系统的设计至关重要.随着数值方法和计算机硬件的迅速发展,计算流体力学(CFD)方法逐渐成为气动热环境预测的重要手段.但运用CFD方法模拟气动热环境的难点在于其精度受多种因素影响,如离散方法 ...
    本站小编 Free考研考试 2021-12-25
  • 过渡状态下材料断裂韧性的计算方法
    通常情况下材料断裂韧性被看作常数,为平面应变状态下的断裂韧性值.实际上,断裂韧性的值是随着试样厚度的变化而变化的,即断裂韧性是一个与应力状态有关的量,并不是仅与材料性质有关的常数.在一些航空技术先进国家,已经通过大量的试验给出了许多常用材料的KC-B曲线,即断裂韧性-厚度曲线,而中国基本没有建立航空 ...
    本站小编 Free考研考试 2021-12-25
  • 基于单幅立式标靶图像的单目深度信息提取
    机器视觉作为智能车辆环境感知系统中最重要的组成部分,为决策层提供大量必要的环境信息,具有十分重要的意义.其中,障碍物的深度信息为无人驾驶或辅助驾驶系统的主动避撞、防撞预警及路径规划等[1,2]提供重要的参数信息.目前智能车的机器视觉测量一般分为双目视觉测量[3,4]和单目视觉测量两类.双目视觉测量容 ...
    本站小编 Free考研考试 2021-12-25
  • 基于涡方法生成大涡模拟进口条件的数值计算
    关于生成大涡模拟非定常进口条件的研究一直以来都是一个难题.在很多计算流体力学的数值模拟中,例如使用大涡模拟对叶轮机进行的数值模拟,计算结果在很大程度上受进口条件影响[1,2].大涡模拟进口的流场需要符合湍流的统计特性,生成大涡模拟进口条件的方法要尽可能地容易操作,这样针对不同的进口情况能快速有效地生 ...
    本站小编 Free考研考试 2021-12-25
  • 整体次加筋壁板屈曲载荷近似计算方法
    整体加筋壁板由于其制造成本低、有较长的疲劳寿命等优点,近些年来在飞机结构上有着广泛的应用.在制造技术方面,整体加工技术和增材制造技术(如电子束自由成型制造技术[1])不断取得发展,又进一步推动了整体加筋壁板的发展,扩展了结构设计空间[1].在这样的背景下,一些****从丰富筋条结构层次的角度出发,提 ...
    本站小编 Free考研考试 2021-12-25
  • 基于MSER的无人机图像建筑区域提取
    近年来,随着技术的不断发展,无人机广泛应用在军事和民用领域.建筑区域对于无人机而言,是一类重要的感兴趣目标,一方面对其快速检测,是无人机完成导航、侦察、监测等任务的基础和重要内容;另一方面,无人机在出现故障等紧急情况时,通过对建筑区域进行准确检测并及时规避,从而极大地减少或避免人员伤亡和财产损失.与 ...
    本站小编 Free考研考试 2021-12-25
  • 飞机载荷谱实测数据双缓冲视景仿真系统设计
    飞机载荷谱实测是将飞机在使用过程中的状态参数、载荷参数等进行信息采集和记录,为飞机全机试验、结构可靠性设计提供试验数据与科学依据[1,2].飞机载荷谱实测数据类型复杂,对于不同的机型,采集参数不同,数据结构也不相同,使得飞机载荷谱数据资源比较难以组织和管理[3,4,5,6].随着测试需求的不断提高和 ...
    本站小编 Free考研考试 2021-12-25
  • 基于多通道投影系统的纹理表面实时绘制技术
    随着投影机硬件性能的提升与计算机图形图像技术的不断发展,投影技术被应用到越来越多的领域中.通过投影技术来改变物体表面的显示效果是近年来增强现实领域的一个热门研究课题.基于投影系统的光照补偿技术可以消除投影表面的交叉反射、散射等现象对投影效果造成的影响,让增强现实技术应用到更多的场合中,用户可以更随意 ...
    本站小编 Free考研考试 2021-12-25
  • 基于数字滤波器的伺服系统谐振抑制方法
    在实际的机械伺服系统中,机械谐振模态普遍存在.原因是伺服系统的传动部分,比如传动轴、连接轴等,并非是完全刚性的,在受力后会发生弹性形变.机械谐振不仅会影响伺服系统的稳定性和跟踪精度,还会严重损害机械部件,降低其寿命.因此,在伺服系统中,机械谐振的抑制一直是控制研究的重要问题,对此已有大量研究.机械谐 ...
    本站小编 Free考研考试 2021-12-25
  • 信息提供下的公交管制策略
    随着IT技术的快速发展,公共交通运行的实时信息往往能够帮助乘客更好地规划出行,这些信息包括时刻表、车次计划的变更、预计的延迟等.但由于个体的差异,每位乘客获取公交信息的能力是不同的,有的乘客能够利用信息计划出行,降低站台等待时间成本,使得总成本降低,而有的乘客则因为不擅于利用信息,使计划成本超过计划 ...
    本站小编 Free考研考试 2021-12-25