二维码(扫一下试试看!) | 三联神经网络与区域自适应策略融合的目标跟踪方法 | Target Tracking Method Based on Fusion of Triple Neural Network and Area Adaptation | 投稿时间:2020-06-08 | DOI:10.15918/j.tbit1001-0645.2020.010 | 中文关键词:目标跟踪深度学习三联区域候选回归神经网络 | English Keywords:object trackingdeep learningTripleRPN | 基金项目:国家部委基础科研计划资助项目(JCKY2019602C015) | | 摘要点击次数:591 | 全文下载次数:242 | 中文摘要: | 为解决目标跟踪过程中快速运动模糊、背景相似干扰、目标状态变化等问题,基于孪生网络跟踪算法,提出三联区域候选神经网络(TripleRPN)算法与跟踪区域自适应策略(TAA)相融合的目标跟踪方法(TAA+TripleRPN).三联区域候选神经网络根据当前跟踪结果实时更新网络匹配模板,提高了跟踪器对目标状态变化的敏感性.通过区域自适应策略,根据区域候选回归网络分类分支的得分在网络的两组输出间择优选择,提高算法长时跟踪的鲁棒性.针对背景相似干扰和目标状态变化的问题时,TAA+TripleRPN跟踪器能达到更好的跟踪性能.在OTB2015数据集上,算法的AUC达到66.31%,CLE达到88.28%.在实际场景中实现验证与应用,跟踪效果良好. | English Summary: | In order to solve the problems of fast motion blur, background similar interference and target state change in the process of target tracking, a target tracking method (TAA+TripleRPN) that combines the triple area candidate neural network (tripleRPN) algorithm with the tracking area adaptive strategy (TAA) was proposed based on siamese network tracking algorithm. The triple-area candidate neural network updates the network matching template in real time based on the current tracking results, which improves the sensitivity of the tracker to changes in the target state. Through the regional adaptive strategy, based on the scores of the classification candidates of the regional candidate regression network, the two groups of network outputs are selected optimally, which improves the robustness of the algorithm's long-term tracking. For the problems of similar background interferences and target state changes, the TAA+TripleRPN tracker can achieve better tracking performance. On the OTB2015 dataset, the algorithm has an AUC of 66.31% and a CLE of 88.28%. The verification and application are implemented in actual scenarios, and the tracking effect is good. | 查看全文查看/发表评论下载PDF阅读器 | |
刘琼昕,宋祥,覃明帅.基于知识增强的深度新闻推荐网络[J].北京理工大学学报(自然科学版),2021,41(3):286~294.LIUQiongxin,SONGXiang,QINMingshuai.DeepKnowledge-EnhancedNetworkforNewsRecommendation ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王放,邢冀川.一种改进型神经网络的光纤预警系统适应性研究[J].北京理工大学学报(自然科学版),2021,41(6):649~657.WANGFang,XINGJichuan.AnImprovedNeuralNetworkBasedResearchonGeneralizationofanOptica ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈军,兀亚伟,李垣志,钱新明,袁梦琦.基于动态贝叶斯网络的燃气管网燃爆风险分析[J].北京理工大学学报(自然科学版),2021,41(7):696~705.CHENJun,WUYawei,LIYuanzhi,QIANXinming,YUANMengqi.RiskAnalysisofBurningan ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张宏伟,达新宇,胡航,倪磊,潘钰.基于协作频谱感知的多无人机通信网络谱效优化研究[J].北京理工大学学报(自然科学版),2021,41(8):830~839.ZHANGHongwei,DAXinyu,HUHang,NILei,PANYu.SpectrumEfficiencyOptimizationo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21罗森林,杨俊楠,潘丽敏,吴舟婷.面向信息与通信技术供应链网络画像构建的文本语义匹配方法[J].北京理工大学学报(自然科学版),2021,41(8):864~872.LUOSenlin,YANGJunnan,PANLimin,WUZhouting.TextSemanticMatchingMethodf ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21郑戍华,南若愚,李守翔,王向周,陈梦心.基于轻量化网络的眼部特征分割方法[J].北京理工大学学报(自然科学版),2021,41(9):970~976.ZHENGShuhua,NANRuoyu,LIShouxiang,WANGXiangzhou,CHENMengxin.ALightweight-Net ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘国满,聂旭娜.一种基于卷积神经网络的雷达干扰识别算法[J].北京理工大学学报(自然科学版),2021,41(9):990~998.LIUGuoman,NIEXuna.ARadarJammingRecognitionAlgorithmBasedonConvolutionalNeuralNetwork ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21韩子硕,王春平,付强.基于深层次特征增强网络的SAR图像舰船检测[J].北京理工大学学报(自然科学版),2021,41(9):1006~1014.HANZishuo,WANGChunping,FUQiang.ShipDetectioninSARImagesBasedonDeepFeatureEnha ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王建中,徐浩楠,王洪枫,于子博.基于残差密集块和自编码网络的红外与可见光图像融合[J].北京理工大学学报(自然科学版),2021,41(10):1077~1083.WANGJianzhong,XUHaonan,WANGHongfeng,YUZibo.InfraredandVisibleImageFu ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈宇,张勇,陈实.大规模卫星集群网络自适应加权分簇算法[J].北京理工大学学报(自然科学版),2021,41(11):1188~1192.CHENYu,ZHANGYong,CHENShi.AdaptiveWeightedClusteringAlgorithmforLarge-ScaleSatelli ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |