二维码(扫一下试试看!) | 基于残差密集块和自编码网络的红外与可见光图像融合 | Infrared and Visible Image Fusion Based on Residual Dense Block and Auto-Encoder Network | 投稿时间:2021-05-11 | DOI:10.15918/j.tbit1001-0645.2021.131 | 中文关键词:图像融合深度学习自编码网络残差密集块 | English Keywords:image fusiondeep learningauto-encodingresidual dense block | 基金项目:国家部委基础科研计划资助项目(JCKY2019602C015) | | 摘要点击次数:396 | 全文下载次数:337 | 中文摘要: | 红外与可见光图像融合是复杂环境中获得高质量目标图像的一种有效手段,在目标检测与跟踪、图像增强、遥感、医疗等领域有广泛应用前景.为解决目前基于深度学习的红外与可见光图像融合方法中存在的网络无法充分提取特征、特征信息利用不充分和融合图像清晰度低的问题,本文提出了一种基于残差密集块的端到端自编码图像融合网络结构,利用基于残差密集块的编码器网络将图像分解成背景特征图和细节特征图,然后将两种特征图进行融合,再通过解码器进行重构,还原出最终的融合图像.测试结果表明,本文的方法可以得到清晰度高、目标突出、轮廓明显的融合图像,在SF、AG、CC、SCD、Qabf、SSIM 6个融合质量评估指标上与目前代表性融合方法相比均有不同程度的提升,特别是在融合图像清晰度上优势明显,且对于模糊、遮挡、逆光、烟雾等复杂环境图像有较好的融合效果. | English Summary: | Infrared and visible image fusion is an effective means to obtain high-quality target images in complex environments. It has broad application prospects in the fields of target detection and tracking, image enhancement, remote sensing, and medical treatment. In order to solve the problems of the current deep learning-based infrared and visible image fusion methods that the network cannot fully extract featuresd, cannot fully utilize the feature information, and the clarity of fusion image is low, this paper proposes an end-to-end image fusion network based on residual dense block and auto-encoder, which uses an encoder network based on residual dense block to decompose the image into a background feature map and a detailed feature map, after that the two feature maps will be fused, and then reconstructed by the decoder to restore the final fusion image. The test results show that the method in this paper can obtain a fused image with high definition, prominent target and obvious outline, compared with the current representative fusion methods, the six fusion quality evaluation indicators of SF, AG, CC, SCD, Qabf, and SSIM have been improved in different degrees, especially has a huge advantage in the clarity of the fusion image. And for complex environmental images such as blur, occlusion, backlighting, and smoke, there is a good fusion effect. | 查看全文查看/发表评论下载PDF阅读器 | |
陈宇,张勇,陈实.大规模卫星集群网络自适应加权分簇算法[J].北京理工大学学报(自然科学版),2021,41(11):1188~1192.CHENYu,ZHANGYong,CHENShi.AdaptiveWeightedClusteringAlgorithmforLarge-ScaleSatelli ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21岳光,潘玉田,张华君,刘学杰,李宇峰.多神经元神经网络算法的DSP无人侦察车伺服控制系统[J].北京理工大学学报(自然科学版),2019,39(2):203~208.YUEGuang,PANYu-tian,ZHANGHua-jun,LIUXue-jie,LIYu-feng.AMulti-Neuron ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王剑,王新民,谢蓉,李婷,曹宇燕.基于IMM-UKF方法的机电作动器突发性故障诊断研究[J].北京理工大学学报(自然科学版),2019,39(2):198~202,208.WANGJian,WANGXin-ming,XIERong,LITing,CAOYu-yan.AbruptFaultDiagno ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21杨宏宇,程放.基于增强LEACH协议的无线传感器网络恶意节点检测模型[J].北京理工大学学报(自然科学版),2019,39(3):304~310.YANGHong-yu,CHENGFang.EnhancedLEACHProtocolBasedWirelessSensorNetworkMaliciou ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王保宪,王哲,张宇峰,赵维刚,李义强,王凯.基于图像高维特征压缩映射的混凝土表面裂缝检测算法[J].北京理工大学学报(自然科学版),2019,39(4):343~351.WANGBao-xian,WANGZhe,ZHANGYu-feng,ZHAOWei-gang,LIYi-qiang,WANGKai ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘连,王孝通.基于图像熵分块的压缩感知字典学习算法[J].北京理工大学学报(自然科学版),2019,39(5):520~523.LIULian,WANGXiao-tong.DictionaryLearningAlgorithmforCompressed-SensingBasedontheEntrop ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王超,刘美灵,刘振宇,马沁巍,汪远银.触发方式对低速相机采集图像时间准确度的影响[J].北京理工大学学报(自然科学版),2019,39(6):632~637.WANGChao,LIUMei-ling,LIUZhen-yu,MAQin-wei,WANGYuan-yin.InfluenceofTrigg ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21宋宇波,彭朝阳,苏悦,刘蕴箫,赵千锋,朱珍超.基于神经网络模型的室内大规模人流密度预测[J].北京理工大学学报(自然科学版),2019,39(7):714~718,769.SONGYu-bo,PENGChao-yang,SUYue,LIUYun-xiao,ZHAOQian-feng,ZHUZhen- ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21胡忠铠,高昆,豆泽阳,周颖婕,巩学美.基于全变分正则最大后验估计的高光谱图像亚像元快速定位方法[J].北京理工大学学报(自然科学版),2019,39(8):870~875.HUZhong-kai,GAOKun,DOUZe-yang,ZHOUYing-jie,GONGXue-mei.AFastMeth ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张阳,张涛,陈锦,王禹,邹琪.基于SMOTE和机器学习的网络入侵检测[J].北京理工大学学报(自然科学版),2019,39(12):1258~1262.ZHANGYang,ZHANGTao,CHENJin,WANGYu,ZOUQi.ResearchonNetworkIntrusionDetectio ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |