删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于SMOTE和机器学习的网络入侵检测

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于SMOTE和机器学习的网络入侵检测
Research on Network Intrusion Detection Based on SMOTE Algorithm and Machine Learning
投稿时间:2018-11-02
DOI:10.15918/j.tbit1001-0645.2018.423
中文关键词:网络入侵检测SMOTE算法机器学习数据再平衡
English Keywords:network intrusion detectionSMOTE algorithmmachine learningdata rebalancing
基金项目:
作者单位
张阳中国信息安全测评中心, 北京 100085
张涛中国信息安全测评中心, 北京 100085
陈锦中国信息安全测评中心, 北京 100085
王禹中国信息安全测评中心, 北京 100085
邹琪中国信息安全测评中心, 北京 100085
摘要点击次数:737
全文下载次数:580
中文摘要:
网络入侵检测已经广泛运用机器学习模型,但是研究者们多关注模型选择和参数优化,很少考虑数据不平衡的影响,往往会导致少数类入侵样本的检测效果较差.针对该问题,以SMOTE (synthetic minority oversampling technique)数据再平衡算法为研究重点,应用入侵检测数据集KDD99作为原始训练集,使用简单抽样和SMOTE算法生成再平衡训练集.采用多种机器学习模型分别在原始训练集和再平衡训练集进行5折交叉验证.实验结果表明,与原始训练集相比,使用再平衡训练集建模能够在不降低甚至提高多数类样本识别效果前提下,使少数类样本的识别准确率和召回率增强10%~20%.因此,SMOTE算法对不平衡样本下的网络入侵检测有显著的提升作用.
English Summary:
The machine learning model has been widely used in network intrusion detection, but researchers pay more attention to model selection and parameter optimization, but rarely consider the impact of data imbalance, which often leads to poor detection effect of a small number of intrusion samples. To solve this problem, focusing on the data rebalancing algorithm of SMOTE(synthetic minority oversampling technique), taking the intrusion detection data set KDD99 as the original training set,a simple sampling method and SMOTE algorithm were used to generate the rebalancing training set. And then,a variety of machine learning models were used to perform 5 fold cross-validation for the original training set and the rebalanced training set respectively. Experimental results show that, compared with the original training set, the use of rebalancing training set modeling can improve the recognition accuracy and recall rate of the minor class samples by about 10%~20% without reducing or even improving the recognition effect of major class samples. Therefore, SMOTE algorithm can significantly improve network intrusion detection under unbalanced samples.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 网络 数据 中文 优化