二维码(扫一下试试看!) | 基于增强LEACH协议的无线传感器网络恶意节点检测模型 | Enhanced LEACH Protocol Based Wireless Sensor Network Malicious Node Detection Model | 投稿时间:2017-09-12 | DOI:10.15918/j.tbit1001-0645.2019.03.013 | 中文关键词:无线传感器网络恶意节点信誉值簇集群判定 | English Keywords:wireless sensor networkmalicious nodereputation valueclusterdetermine | 基金项目:国家科技重大专项项目(2012ZX03002002);国家自然科学基金资助项目(U1833107);中国民航科技项目(MHRD201009,MHRD201205);中央高校基本科研业务费专项项目(3122014D033) | | 摘要点击次数:672 | 全文下载次数:384 | 中文摘要: | 针对现有无线传感器网络恶意节点检测方法效率较低的不足,提出一种基于增强低功耗自适应集簇分层(enhanced low energy adaptive clustering hierarchy,enhanced LEACH)路由协议信誉机制的恶意节点检测(malicious node detection based on enhanced LEACH with reputation,MNDELR)模型.在无线传感器网络中使用增强LEACH路由协议选取簇首节点,其余节点选择对应簇首形成各簇集群并确定网络数据包传递路径.节点在数据包内添加节点编号、信誉评价等信息并按传递路径将数据包发送至汇聚节点;汇聚节点解析获取数据包内节点编号并与源节点编号比较判定,形成可疑节点列表;计算节点信誉值并与阈值比较判定网络中的恶意节点.实验结果表明,与其他方法相比,MNDELR模型在无线传感器网络中对恶意节点的检测效果较为显著. | English Summary: | To solve the efficiency problem of the existing malicious node detection methods in wireless sensor networks (WSN),a malicious node detection model was proposed based on enhanced low energy adaptive clustering hierarchy (LEACH) routing protocol with reputation (MNDELR).Firstly,in wireless sensor network,the enhanced LEACH routing protocol was used to select the cluster-head nodes and make other nodes to be corresponding cluster-head nodes to form the clusters and determine the packets delivery paths in the network.Then,some information,including the node numbers and the reputation evaluation,were added to the data packets of nodes,and the data packets were sent to the sink node according to the delivery paths.The node numbers in the packets were parsed and compared with the source node numbers in the convergent node to form a list of suspicious nodes.Finally,the reputation values of the nodes were calculated and compared with the threshold to determine the malicious nodes in the network.The experiment results show that,compared with other methods,MNDELR model can detect malicious nodes in WSN more effectively. | 查看全文查看/发表评论下载PDF阅读器 | |
宋宇波,彭朝阳,苏悦,刘蕴箫,赵千锋,朱珍超.基于神经网络模型的室内大规模人流密度预测[J].北京理工大学学报(自然科学版),2019,39(7):714~718,769.SONGYu-bo,PENGChao-yang,SUYue,LIUYun-xiao,ZHAOQian-feng,ZHUZhen- ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张阳,张涛,陈锦,王禹,邹琪.基于SMOTE和机器学习的网络入侵检测[J].北京理工大学学报(自然科学版),2019,39(12):1258~1262.ZHANGYang,ZHANGTao,CHENJin,WANGYu,ZOUQi.ResearchonNetworkIntrusionDetectio ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21韩先君,刘艳丽,杨红雨.基于生成对抗网络的人脸图像彩色化方法[J].北京理工大学学报(自然科学版),2019,39(12):1285~1291.HANXian-jun,LIUYan-li,YANGHong-yu.FaceImageColorizationBasedonGenerativeAdvers ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21李金,陈凤,孟祥莲,边晨源,梁洪.脑脊液中t-tau蛋白的全基因组网络辅助分析和富集研究[J].北京理工大学学报(自然科学版),2019,39(S1):6~11.LIJin,CHENFeng,MENGXiang-lian,BIANChen-yuan,LIANGHong.Genome-WideNetw ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21庞枫骞,刘志文,时永刚.基于生成对抗网络的细胞形变动态分类[J].北京理工大学学报(自然科学版),2019,39(S1):33~37.PANGFeng-qian,LIUZhi-wen,SHIYong-gang.ClassificationofCellDeformationDynamicsBasedo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21程坤,时永刚,李依桐,刘志文.基于生成对抗网络的海马子区图像分割[J].北京理工大学学报(自然科学版),2019,39(S1):159~163.CHENGKun,SHIYong-gang,LIYi-tong,LIUZhi-wen.ImageSegmentationofHippocampalSubfi ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21诸云,王建宇,杨莹,刘博航.城市道路交通拥堵的模糊神经网络评析[J].北京理工大学学报(自然科学版),2018,38(5):487~492.ZHUYun,WANGJian-yu,YANGYing,LIUBo-hang.FuzzyEvaluationofUrbanTrafficCongestionBa ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21程进,王娜.光纤法-珀腔声传感器温度特性研究[J].北京理工大学学报(自然科学版),2018,38(12):1276~1281,1288.CHENGJin,WANGNa.CharacteristicsonTemperatureofFiberAcousticSensorBasedonFiberFabr ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王向周,张新,郑戍华.基于人工神经网络动态标定算法的低成本视线追踪系统[J].北京理工大学学报(自然科学版),2018,38(12):1263~1268.WANGXiang-zhou,ZHANGXin,ZHENGShu-hua.ALow-CostEye-GazeTrackingSystemBased ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈国龙,张卫民,庞炜涵,秦峰,果艳.基于分形理论的平面线圈激励涡流传感器[J].北京理工大学学报(自然科学版),2017,37(1):10~14.CHENGuo-long,ZHANGWei-min,PANGWei-han,QINFeng,GUOYan.APlanarEddyCurrentProbeB ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |