删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于人工神经网络动态标定算法的低成本视线追踪系统

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于人工神经网络动态标定算法的低成本视线追踪系统
A Low-Cost Eye-Gaze Tracking System Based on Artificial Neural Network Dynamic Calibration Algorithm
投稿时间:2017-06-23
DOI:10.15918/j.tbit1001-0645.2018.12.009
中文关键词:主动表现模型梯度向量法人工神经网络动态标定算法
English Keywords:active appearance model (AAM)gradient vectorartificial neural networkdynamic calibration algorithm
基金项目:
作者单位E-mail
王向周北京理工大学 自动化学院, 北京 100081
张新北京理工大学 自动化学院, 北京 100081
郑戍华北京理工大学 自动化学院, 北京 100081zhengshuhua@bit.edu.cn
摘要点击次数:638
全文下载次数:374
中文摘要:
针对视线追踪系统成本高、标定算法复杂的问题,研究了一种低成本视线追踪系统.系统采用低成本网络摄像头,采集到的图像首先采用Haar-like特征与肤色结合算法来进行人脸检测,并利用主动表现模型算法和光流法定位并跟踪人脸特征点;然后利用梯度向量法进行瞳孔中心检测;为了提高系统精度和鲁棒性,提出了一种人工神经网络的动态标定算法.实验表明,视线追踪系统不仅具有很好的鲁棒性,而且具有较高的精度,在头部静止的情况下平均误差为1.34°,在头部运动的情况下平均误差为3.26°.
English Summary:
In order to reduce the cost of eye-gaze tracking system and simplify the complexity of the calibration algorithm,a low-cost eye-gaze tracking system was developed.The Haar-like feature and skin color combination algorithm were used to detect the human face.The active appearance model (AAM) algorithm and the optical flow method were used to locate and track the face feature points.And the pupil center was detected by the gradient vector method.An artificial neural network dynamic calibration algorithm was proposed to improve the tracking accuracy and robustness.Experiments show that the eye-gaze tracking system not only has better robustness,but also has higher precision.The average error of the system is 1.34° at head rest,and 3.26° at head movement.
查看全文查看/发表评论下载PDF阅读器
相关话题/系统 北京理工大学 自动化 北京 中文