二维码(扫一下试试看!) | 汽车电控液压制动系统动力学建模及性能研究 | Dynamics Modeling and Performance Analysis for Electro Hydraulic Braking System | 投稿时间:2018-06-15 | DOI:10.15918/j.tbit1001-0645.2018.增刊1.026 | 中文关键词:电控液压制动系统无迹卡尔曼滤波估计粒子群优化时变系统 | English Keywords:electro hydraulic braking systemunscented Kalman filter estimationparticle swarm optimizationtime-varying system | 基金项目: | | 摘要点击次数:697 | 全文下载次数:294 | 中文摘要: | 为提高估计电控液压制动系统的压力估计精度,针对其工作特性提出一种基于粒子群优化的UKF算法的汽车电控液压制动系统动力学建模方法.该算法根据液压制动系统的工作特性将压力估计问题转化为多维参数优化的问题,应用UKF对汽车电控液压制动系统进行压力估计,根据该液压系统的强非线性及时变系统特性引入液压系统指数参数,压力变化参数差,及测量轮缸压力作为状态量,引入粒子群算法根据目标函数,对UKF中的参数及观测噪声,过程噪声进行迭代寻优.实验数据对比,验证该算法参数估计的精确性及实时性.研究结果对液压制动系统以及整个液压系统的研究都具有指导意义. | English Summary: | To improving the estimate accuracy of pressure of electro-hydraulic braking (EHB) system, a novel dynamics modeling method was proposed based on particle swarm optimization and unscented Kalman filter (UKF) arithmetic. In the arithmetic, according to the work characteristic of EHB system, the pressure estimation was translated into optimizing multidimensional parameter. The nonlinear differential equations were derived in terms of dynamic characteristics of electro-hydraulic braking system. Then, the UKF was applied to estimate the time-varying parameters of the model with an objective function. To obtain accurately the time-varying parameters, the measurement noise, process noise, and parameters in the unscented Kalman filter were optimized with the particle swarm algorithm. Comparing with the experimental data in several braking cases, the results validate the effectiveness and accuracy of the novel method. Therefore, the proposed model can not only provide a theoretical basis for the design of a hydraulic braking system but also help realize the chassis integrated control of electric vehicles. | 查看全文查看/发表评论下载PDF阅读器 | |
张志达,李韶华,刘星,周军魏.全轮转向多轴车辆性能分析及侧翻前馈预警研究[J].北京理工大学学报(自然科学版),2018,38(S1):142~146.ZhangZhida,LiShaohua,LiuXing,ZhouJunwei.PerformanceAnalysisandRolloverFeed ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21安全,王翔宇,李亮.智能混合动力汽车经济性自适应巡航控制策略研究[J].北京理工大学学报(自然科学版),2018,38(S1):133~136.ANQuan,WANGXiang-yu,LILiang.ResearchonControlStrategyforHybridElectricVehicle' ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21蔡文奇,彭显昌,包英豪,高炳钊.纯电动汽车两挡变速箱齿轮振动噪声仿真分析与优化设计[J].北京理工大学学报(自然科学版),2018,38(S1):152~156.CAIWenqi,PENGXianchang,BAOYinghao,GAOBingzhao.SimulationAnalysisofGea ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈勇,郑阳阳,李光鑫,臧立彬,于淼,吴忠云.电动汽车两挡自动变速器噪声分析与优化[J].北京理工大学学报(自然科学版),2018,38(S1):157~160.CHENYong,ZHENGYang-yang,LIGuang-xin,ZANGLi-bin,YUMiao,WUZhong-yun.Nois ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21生辉,盖江涛,马田,马长军,韩政达.履带车辆机电复合制动协调控制现状分析[J].北京理工大学学报(自然科学版),2018,38(S1):195~199.SHENGHui,GAIJiang-tao,MATian,MAChang-jun,HANZheng-da.AnalysisofCoordinated ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张润生,张伟,张思龙,张利鹏.轮毂电机驱动汽车横摆侧倾稳定性联合控制[J].北京理工大学学报(自然科学版),2018,38(S1):200~204.ZHANGRun-sheng,ZHANGWei,ZHANGSi-long,ZHANGli-peng.RollandYawStabilityJointCo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21李将彬,吴学雷,李洪彪,刘洋,肖琨.基于GT-SUITE的机电复合驱动车辆建模与仿真[J].北京理工大学学报(自然科学版),2018,38(S1):211~214.LIJiang-bin,WUXue-lei,LIHong-biao,LIUYang,XIAOKun.ModelingandSimulat ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21李爱娟,王希波,邱绪云,王保义.基于改进遗传算法的电动汽车轨迹优化方法[J].北京理工大学学报(自然科学版),2018,38(S1):226~230.LIAi-juan,WANGXi-bo,QIUXu-yun,WANGBao-yi.TrajectoryPlanningofElectricVehicl ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21廖昕,李韶华,杨绍普.电动车辆驾驶室隔振系统建模与振动特性分析[J].北京理工大学学报(自然科学版),2018,38(S1):221~225.LIAOXin,LIShao-hua,YANGShao-pu.ModelingandVibrationCharacteristicAnalysisofCabI ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王洪亮,谷文豪,张庆渴,王尔烈.汽车坡起中EPB的Bang-Bang控制研究[J].北京理工大学学报(自然科学版),2017,37(1):46~49.WANGHong-liang,GUWen-hao,ZHANGQing-ke,WANGEr-lie.ResearchonBang-BangControl ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |