 二维码(扫一下试试看!) | 一种基于卷积神经网络的雷达干扰识别算法 | A Radar Jamming Recognition Algorithm Based on Convolutional Neural Network | 投稿时间:2020-11-28 | DOI:10.15918/j.tbit1001-0645.2020.220 | 中文关键词:干扰识别卷积神经网络伪Wigner-Ville分布欺骗干扰压制干扰 | English Keywords:jamming recognitionconvolutional neural networkthe pseudo Wigner-Ville distributiondeception jammingsuppress jamming | 基金项目: | | 摘要点击次数:336 | 全文下载次数:192 | 中文摘要: | 干扰识别是雷达抗干扰的前提,但是基于特征参数的识别方法受噪声影响大,且参数的特征提取只是发生在某一脉冲重复周期内,难以识别一些具有时序关系的干扰信号.然而利用特征去识别干扰的思路是可行的,据此,本文提出一种利用两个卷积神经网络级联的干扰类型判别方法,此方法基于信号的伪Wigner-Ville分布,分别利用单周期时频图像完成干扰预分类,多周期合成时频图像完成干扰细分类,实现了8种典型干扰样式的识别,尤其适用于拖引干扰的识别.实验结果表明,在本文生成的数据集上,8种干扰的平均识别正确率达到了98%以上. | English Summary: | Jamming recognition is the premise of radar anti-jamming, but the recognition method based on characteristic parameters is greatly affected by noise. In addition, the feature extraction of parameters only can take place in a certain pulse repetition time, so it is difficult to identify some jamming signals with temporal relationship. However, the idea of using features to identify interference is feasible. On this basis, a jamming identification method was proposed, taking a cascade form to join two convolutional neural networks. Based on the Pseudo Wigner-Ville distribution of the signal, this method was arranged to use the single-period time-frequency image to complete jamming pre-classification and the multi-period composite time-frequency image to complete jamming fine classification, and to recognize eight typical jamming types, especially suitable for the pulling off jamming recognition. The experiment results show that the average recognition accuracy of eight kinds of jamming can reach up to 98% on the data sets generated in this paper. | 查看全文查看/发表评论下载PDF阅读器 | |
许彤,陈亚洲,王玉明,赵敏.无人机数据链带内连续波电磁干扰效应研究[J].北京理工大学学报(自然科学版),2021,41(10):1084~1094.XUTong,CHENYazhou,WANGYuming,ZHAOMin.ResearchonIn-BandContinuousWaveElectro ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21高原,施云惠,韩妍妍,曾萍,尹宝才.附加法向信息的三维网格预测编码[J].北京理工大学学报(自然科学版),2019,39(1):88~94.GAOYuan,SHIYun-hui,HANYan-yan,ZENGPing,YINBao-cai.Compressionof3DMeshBasedonNorm ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张江霄,冯春辉,马金鑫,张斌,徐畅,李舟军,党莹.可任意花费的可传递电子现金系统[J].北京理工大学学报(自然科学版),2019,39(3):283~289.ZHANGJiang-xiao,FENGChun-hui,MAJin-xin,ZHANGBin,XUChang,LIZhou-jun,DANG ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈树新,陈建华,吴昊,岳龙华.多径条件下GNSS干扰信号测向分布研究[J].北京理工大学学报(自然科学版),2019,39(4):359~364.CHENShu-xin,CHENJian-hua,WUHao,YUELong-hua.TheDirectionFindingDistributionofG ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21史鹏亮,靳文鑫,吴舜晓.实施转发式GNSS欺骗干扰的选星方法研究[J].北京理工大学学报(自然科学版),2019,39(5):524~531.SHIPeng-liang,JINWen-xin,WUShun-xiao.ResearchonSatelliteSelectionAlgorithmofGNS ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21姚国伟,张凤,曹建文,邓志均.基于有向图的运载火箭综合电子系统设计方法[J].北京理工大学学报(自然科学版),2019,39(6):650~654.YAOGuo-wei,ZHANGFeng,CAOJian-wen,DENGZhi-jun.LaunchVehicleIntegratedElectron ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21包磊,王春阳,白娟,曾会勇.双隐身飞机自卫相干干扰对单脉冲雷达影响[J].北京理工大学学报(自然科学版),2019,39(7):763~769.BAOLei,WANGChun-yang,BAIJuan,ZENGHui-yong.InfluenceofCooperativeSelf-DefenseCo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张冬晓,陈亚洲,程二威,杜宝舟.无人机信息链路电磁干扰效应规律研究[J].北京理工大学学报(自然科学版),2019,39(7):756~762.ZHANGDong-xiao,CHENYa-zhou,CHENGEr-wei,DUBao-zhou.EffectsofElectromagneticInte ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21韩航程,程志恒,孙灿灿,田露.无源互调干扰的二维时延自适应估计算法[J].北京理工大学学报(自然科学版),2019,39(9):944~949.HANHang-cheng,CHENGZhi-heng,SUNCan-can,TIANLu.TheAdaptiveTwo-DimensionalTimeDe ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2019年总目次(第39卷)[J].北京理工大学学报(自然科学版),2019,39(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2019,39(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |