二维码(扫一下试试看!) | 基于知识增强的深度新闻推荐网络 | Deep Knowledge-Enhanced Network for News Recommendation | 投稿时间:2019-11-04 | DOI:10.15918/j.tbit1001-0645.2019.273 | 中文关键词:知识增强深度新闻推荐网络知识图谱实体路径特征 | English Keywords:knowledge enhancementdeep news recommendation networkknowledge graphentity path feature | 基金项目: | | 摘要点击次数:608 | 全文下载次数:223 | 中文摘要: | 在新闻推荐场景下,传统的基于文本特征的新闻推荐模型只考虑了词的共现关系,无法捕获词语的隐含词义和关联知识;而基于深度学习的推荐模型在融合知识图谱信息中仅仅考虑实体的信息,忽略了远距离实体之间的联系,造成实体之间的关联信息和深层次语义联系的缺失.针对该问题提出了一种基于知识增强的深度新闻推荐网络(deep knowledge-enhanced network,DKEN),利用长短期记忆网络提取知识图谱中的实体路径特征,补充到注意力网络中,然后针对不同的候选新闻动态地构建用户的特征.实验表明该实体路径信息能提高模型的效果,在F1指标上提升大约1%. | English Summary: | In the news recommendation scenario, the traditional text-based feature recommendation model only considers the co-occurrence relationship of words, and cannot capture the implicit meaning and associated knowledge of words.The recommendation model based on deep learning only considers the information of the entity in the process of merging the knowledge graph information, ignoring the connection between the distant entities, resulting in the lack of related information and deep semantic relations between entities.A model named deep knowledge-enhanced network (DKEN) was proposed to solve the problem.Firstly, a long-short-term memory network was used to extract the entity path features from the knowledge graph.And then, path features were added to the attention network and the user feature was built dynamically based on the candidate news.Finally, some experiments were carried out.The results show that the entity path features can improve the model's effect and increase by about 1% on the F1 indicator. | 查看全文查看/发表评论下载PDF阅读器 | |
严迎建,郑震,郭朋飞,朱春生.一种检测S盒能量信息泄漏的t检验方法[J].北京理工大学学报(自然科学版),2021,41(5):542~547.YANYingjian,ZHENGZhen,GUOPengfei,ZHUChunsheng.At-TestMethodforDetectingPowerIn ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21刘琼昕,覃明帅.基于知识表示学习的协同矩阵分解方法[J].北京理工大学学报(自然科学版),2021,41(7):752~757.LIUQiongxin,QINMingshuai.CollectiveMatrixFactorizationBasedonKnowledgeRepresentationLe ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21罗森林,杨俊楠,潘丽敏,吴舟婷.面向信息与通信技术供应链网络画像构建的文本语义匹配方法[J].北京理工大学学报(自然科学版),2021,41(8):864~872.LUOSenlin,YANGJunnan,PANLimin,WUZhouting.TextSemanticMatchingMethodf ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21高原,施云惠,韩妍妍,曾萍,尹宝才.附加法向信息的三维网格预测编码[J].北京理工大学学报(自然科学版),2019,39(1):88~94.GAOYuan,SHIYun-hui,HANYan-yan,ZENGPing,YINBao-cai.Compressionof3DMeshBasedonNorm ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张冬晓,陈亚洲,程二威,杜宝舟.无人机信息链路电磁干扰效应规律研究[J].北京理工大学学报(自然科学版),2019,39(7):756~762.ZHANGDong-xiao,CHENYa-zhou,CHENGEr-wei,DUBao-zhou.EffectsofElectromagneticInte ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2019年总目次(第39卷)[J].北京理工大学学报(自然科学版),2019,39(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2019,39(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2018年总目次(第38卷)[J].北京理工大学学报(自然科学版),2018,38(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2018,38(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21单纯,荆高鹏,胡昌振,薛静锋,贺津朝.基于漏洞知识库的8031单片机系统软件漏洞检测算法[J].北京理工大学学报(自然科学版),2017,37(4):371~375.SHANChun,JINGGao-peng,HUChang-zhen,XUEJing-feng,HEJin-zhao.8031Micr ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21郑凤,陈艺戬.基于多径的双极化信道信息反馈方法[J].北京理工大学学报(自然科学版),2017,37(4):365~370.ZHENGFeng,CHENYi-jian.CSIFeedbackBasedonMulti-PathsInformationinDual-PolarizedMIMOSystem ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张真宁,孙华飞,韩希武,曹丽梅.晶粒直径的信息几何结构[J].北京理工大学学报(自然科学版),2017,37(4):436~440.ZHANGZhen-ning,SUNHua-fei,HANXi-wu,CAOLi-mei.TheInformationGeometricStructuresoftheS ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |