删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于轻量化网络的眼部特征分割方法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于轻量化网络的眼部特征分割方法
A Lightweight-Network-Based Segmentation Method for Eye Features
投稿时间:2020-07-14
DOI:10.15918/j.tbit1001-0645.2020.119
中文关键词:语义分割双输入结构注意力机制轻量化网络眼部特征
English Keywords:semantic segmentationdual input structureattention mechanismlightweight networkeye characteristics
基金项目:
作者单位E-mail
郑戍华北京理工大学 自动化学院, 北京 100081
南若愚北京理工大学 自动化学院, 北京 100081
李守翔北京理工大学 自动化学院, 北京 100081lishouxiang@bit.edu.cn
王向周北京理工大学 自动化学院, 北京 100081
陈梦心北京理工大学 自动化学院, 北京 100081
摘要点击次数:299
全文下载次数:197
中文摘要:
针对高分辨率眼部图像的瞳孔、虹膜特征快速识别与检测问题,提出了一种轻量化语义分割网络DIA-UNet (double input attention UNet).它采用对称双编码结构同步获取眼部灰度图及其轮廓图特征,并通过双注意力机制实现了解码端的特征筛选,将深层融合特征作为语义分割输出.在CASIA-Iris-Interval和高分辨率瞳孔数据集上测试结果表明,与其他轻量化语义分割网络相比,本文提出的DIA-UNet在保证虹膜、瞳孔分割准确率的同时网络参数个数仅有0.076 Million,处理速度高达123.5 FPS.
English Summary:
To deal with the problem of accurate and fast recognition and detection of pupil and iris features with high-resolution eye images, a lightweight semantic segmentation network DIA-UNet (dual input attention UNet) was proposed based on the UNet framework. It was arranged that, a symmetric dual coding structure was adopted to obtain the features of the eye grayscale image and its contour image synchronously, the dual attention mechanism was used to carry out the feature filtering on the decoding end, and taking the deep fusion features as a semantic segmentation output. The test results from the CASIA-Iris-Interval and high-resolution pupil datasets show that, compared with other lightweight semantic segmentation networks, the proposed DIA-UNet can guarantee the accuracy of iris and pupil segmentation, while the number of network parameters is only 0.076 Million and the processing speed is up to 123.5 FPS.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 北京理工大学 自动化 网络 中文