删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

双单子分配律的R-矩阵

本站小编 Free考研考试/2021-12-27

双单子分配律的R-矩阵 郭双建1, 张晓辉21. 贵州财经大学数学与统计学院 贵阳 550025;
2. 曲阜师范大学数学科学学院 曲阜 273165 The R-Matrix of Bimonad Distributive Law Shuang Jian GUO1, Xiao Hui ZHANG21. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, P. R. China;
2. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(476 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文讨论了双单子分配律的表示及其R-矩阵结构.设FG是给定的双单子,刻画了单子双模范畴,并给出了其为辫子范畴的充要条件,由此构造了量子Yang-Baxter方程的一组新解系.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-01-21
MR (2010):O154.1
基金资助:国家自然科学基金资助项目(11761017,11801304);中国博士后基金资助项目(2018M630768)
通讯作者:张晓辉E-mail: zxhui-000@126.com
作者简介: 郭双建,E-mail:shuangjguo@gmail.com
引用本文:
郭双建, 张晓辉. 双单子分配律的R-矩阵[J]. 数学学报, 2019, 62(6): 853-864. Shuang Jian GUO, Xiao Hui ZHANG. The R-Matrix of Bimonad Distributive Law. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 853-864.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I6/853


[1] Beck J., Distributive Laws, Seminar on Triples and Categorical Homology Theory, Springer, Berlin, 1969:119-140.
[2] Benton N., Walder P., Linear Logic, Monads and Lambda Calculus, In:Proceedings of the 11th IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 1996.
[3] Blackwell R., Kelly M., Power J., Two-dimensional monad theory, Journal of Pure and Applied Algebra, 1989, 59(1):1-41.
[4] Böhm G, Brzeziński T., Wisbauer R., Monads and comands on module categories, Journal of Algebra, 2009, 322:1719-1747.
[5] Bruguières A., Lack S., Virelizier A., Hopf monads on monoidal categories, Advances in Mathematics, 2011, 227(2):745-800.
[6] Bruguières A., Virelizier A., Categorical centers and Reshetikhin-Turaev invariants, Acta Mathematica Vietnamica, 2008, 33(3):255-277.
[7] Bruguières A., Virelizier A., Hopf monads, Advances in Mathematics, 2007, 215(2):679-733.
[8] Bruguières A., Virelizier A., On the center of fusion categories, Pacific Journal of Mathematics, 2013, 264(1):1-30.
[9] Bruguières A., Virelizier A., Quantum double of Hopf monads and categorical centers, Transactions of the American Mathematical Society, 2012, 364(3):1225-1279.
[10] Guo S. J., Zhang X. H., Guo S. J., et al., Smash product of bimonads (in Chinese), J. Jilin Univ. Sci., 2015, 53(5):1-7.
[11] Mac Lane S., Homologie des Anneaux et des Modules, Colloque de Topologie Algebrique, Louvain, 1956.
[12] Mesablishvili B., Wisbauer R., The Fundamental Theorem for weak braided bimonads, Journal of Algebra, 2017, 490:55-103.
[13] Moerdijk I., Monads on tensor categories, Journal of Pure and Applied Algebra, 2002, 168(2-3):189-208.
[14] Sabry A., Wadler P., A reflection on call-by-value, ACM Transactions on Programming Languages and Systems, 1997, 19(6):916-941.
[15] Street R., The formal theory of monads, Journal of Pure and Applied Algebra, 1972, 2(2):149-168.
[16] Wisbauer R., Algebras versus coalgebras, Applied Categorical Structures, 2008, 16(1-2):255-295.

[1]代瑞香, 刘超, 王顶国. 余拟三角双单子[J]. Acta Mathematica Sinica, English Series, 2010, 53(5): 1035-1040.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23522
相关话题/数学 结构 科学学院 贵州财经大学 统计学院