删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

广义Pareto分布变点检测似然比模型

本站小编 Free考研考试/2021-12-27

闁诲孩顔栭崰鎺楀磻閹剧粯鈷戞い鎰剁悼閹藉瓥P闂備焦瀵х粙鎺楁儗椤斿墽鍗氶柛鎾楀懐鐓嬮悗骞垮劚閻楀啴宕戦幘璇茬妞ゅ繐妫楅悡娑㈡⒑閸忓吋绶查柛鐔稿▕閹焦寰勭仦鎯ф瀭闂佺硶鍓濇笟妤呭汲閵夆晜鈷掗柛娑卞幘缁狅絿绱掔仦鐣屽煟闁诡垰娲ㄩ埀顒婄到婢у海绮堟径瀣弿闁挎繂鎳愮粻鍙夌節閳ь剟鎮ч崼鈶╂灃閻庡箍鍎遍幊搴ㄦ偂閸屾埃妲堥柟缁㈠灠娴滈箖姊洪崨濠傜瑨婵☆偅绻堥獮鎰版晸閿燂拷
547闂備礁婀遍。浠嬪磻閹剧粯鈷掗柛鏇楁櫅閻忣亪鏌eΔ鈧柊锝夊箠閹捐绀冩い蹇撴閻撴盯姊洪崗鍏肩凡闁哥噥鍋勯悾鐑芥晸閿燂拷1130缂傚倷绀侀ˇ顖滅矓閻㈢鍋撻崹顐g殤闁逞屽墲椤鍠婂澶婃辈闁逞屽墴閺屸剝寰勭€n亜顫庡┑鐐茬墛閸ㄥ灝鐣烽敓鐘茬鐟滃繒绮欓崶鈺冪<濠㈣泛锕︽晥闂佸憡菧閸婃牜缂撻挊澹╂棃宕担瑙勭槣闂佸湱鍘ч悺銊╁箰閸洖鐒垫い鎴炲缁佺増銇勯銏╁剱闁挎稒鍔欓獮瀣敍濠婂拋妲锋繝鐢靛仦閸ㄥ綊寮粙妫电儤绻濋崶銊ユ闁哄鐗滈崑鎺楀吹閺冨牊鐓忛柛鈩冩礉閸忓瞼绱掗鍏夊亾鐡掍浇顫夐幆鏂库槈閹烘垳澹曟繛杈剧悼閺咁偄危閸儲鐓曢柟鐑樻尰閸嬬娀鏌嶈閸忔稓娆㈠璺洪棷濡わ絽鍟幊姘扁偓骞垮劚閸熺娀宕戦幘瀛樺闁绘垶锚閳ь剛鍋熼埀顒冾潐閹爼宕曢鐐茬劦妞ゆ垼鍎婚崗灞俱亜閹惧瓨鍊愰柟顔肩埣瀹曢亶骞囬妸銉ゅ婵炶揪绲炬禍鑺ョ閿曗偓闇夐柛蹇曞帶閹兼悂鏌嶈閸忔稑霉閸ヮ剙纾奸柕濠忕畱椤曡鲸鎱ㄥΟ绋垮姉闁稿鎸婚幏鍛喆閸曨剛鏆氶梻浣哄帶瀵儼銇愰崘顏嗙处濡わ絽鍟崑鐘绘煕閳╁啫濮€闁稿鎸婚幏鍛存偪椤栨艾绠戦梻浣告惈閸婄ǹ煤閵忋倕鐒垫い鎴炲缁佹澘顭跨憴鍕磳鐎殿喚鏁婚、娑樜熷畡棰佸婵炶揪缍€椤鎮¢埀顒勬⒒閸屾艾鈧粙顢欐繝鍕潟闁割偅娲栫粻缁樸亜閹炬潙顥氶柛瀣尰閹峰懘宕烽婧惧亾婵犲洦鍊垫繛鎴濈枃缁€瀣煃瑜滈崗娑氱矆娴h桨鐒婇柟娈垮枓閸嬫挸鈽夌€圭姷顦伴梺閫炲苯鍘告繛鏉戞喘椤㈡﹢宕妷褌绗夊┑掳鍊撻悞锔捐姳濮樿埖鐓忛柛鈩冩礈椤︼妇鈧湱枪椤嘲鐣烽敐鍥︽勃闁稿本顨呮禍鎯归敐鍛暈闁告洟绠栭弻锝夋倷閸欏妫戦梺閫炲苯鍘搁柣鎺炵畵瀵剟宕掑锝嗙參濠殿喚鎳撳ú鐘诲磻閹惧瓨濯撮柛娑橈攻閸f悂鏌f惔銏犲枙閻犳劗鍠栭崺鈧い鎴炲椤﹂绱撳鍜佸剶闁硅櫕鐗犻幊鐘活敆閸愮偓钑夌紓鍌欑劍閸愬骞忛敓锟�28缂傚倷绶¢崑澶愵敋瑜旈、妤呮偄閾忓湱鐓嬮梺瑙勬儗閸ㄥ磭绮堟繅娆糚濠电偞娼欓崥瀣嚌妤e啫绠熼柧蹇e亝婵挳骞栧ǎ顒€鈧洖鈻撻敓锟�128.00闂備胶枪缁绘劙宕板☉姘潟闁跨噦鎷�
广义Pareto分布变点检测似然比模型 胡尧1,2, 谌业文31 贵州大学数学与统计学院, 贵阳 550025;
2 贵州大学贵州省公共大数据重点实验室, 贵阳 550025;
3 中山大学数学学院, 广州 510000 A Likelihood Ratio Model for Change Point Detection of Generalized Pareto Distribution HU Yao1,2, CHEN Yewen31 School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China;
2 Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China;
3 School of Mathematics, Sun Yat-sen University, Guangzhou 510000, China
摘要
图/表
参考文献
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(2491 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要为检测极端事件的状态变化,基于似然比方法研究了广义Pareto分布(Generalized Pareto Distribution,GPD)变点检测模型.考虑三参数GPD变点的检验问题,提出了最大似然比检验统计量.通过证明参数变换后GPD的对数似然和检验统计量的一系列极限性质,得到了检验统计量的渐近分布.通过模拟研究,对该方法的有限样本性质进行了评价,实例分析也验证了该方法的可行性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-01-06
PACS:O212.1
基金资助:国家自然科学基金(11661018),贵州省科技计划项目(黔科合平台人才[2017]5788号),贵州省数据驱动建模学习与优化创新团队(黔科合平台人才[2020]5016号),全国统计科学研究(2014LZ46),贵州省自然科学基金(黔科合J字[2014]2058号)资助项目.

引用本文:
胡尧, 谌业文. 广义Pareto分布变点检测似然比模型[J]. 应用数学学报, 2021, 44(4): 553-573. HU Yao, CHEN Yewen. A Likelihood Ratio Model for Change Point Detection of Generalized Pareto Distribution. Acta Mathematicae Applicatae Sinica, 2021, 44(4): 553-573.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I4/553


[1] Holger Dette, Josua Gösmann. A Likelihood ratio approach to sequential change point detection for a general class of parameters. Journal of the American Statistical Association, 2019, 00(0):1-17
[2] Baranowski R, Chen Y N, Fryzlewicz P. Narrowest-over-threshold detection of multiple change points and change-point-like features. Journal of the Royal Statistical Society, 2019, 81(3):649-672
[3] Yu M, Ruggieri E. Change point analysis of global temperature records. International Journal of Climatology, 2019, 39(8):3679-3688
[4] Coles S. An introduction to statistical modeling of extreme values. London:Springer US, 2001
[5] Kiriliouk A, Rootzén H, Segers J, Wadsworth J L. Peaks over thresholds modeling with multivariate generalized Pareto distributions. Technometrics, 2019, 61(1):123-135
[6] Chen B Y, Zhang K Y, Wang L P, Jiang S, Liu G L. Generalized extreme value-Pareto distribution function and its applications in ocean engineering. China Ocean Engineering, 2019, 33(2):127-136
[7] Mo C X, Ruan Y L, He J Q, Jin J L, Liu P, Sun G K. Frequency analysis of precipitation extremes under climate change. International Journal of Climatology, 2019, 39(12):1373-1387
[8] 刘新红, 孟生旺, 李政宵. 地震损失风险的Copula混合分布模型及其应用. 系统工程理论与实践, 2019, 39(7):1855-1866(Liu X H, Meng S W, Li Z X. Copula-mixed distribution model and its application in modeling earthquake loss in China. Systems Engineering-theory & Practice, 2019, 39(7):1855-1866)
[9] 崔玫意, 张玉虎, 陈秋华. Box-Cox正态分布及其在降雨极值分析中的应用. 数理统计与管理, 2017, 36(1):8-17(Cui M Y, Zhang Y H, Chen Q H. Box-Cox normal distribution and its application in rainfall extreme value. Journal of Applied Statistics and Management, 2017, 36(1):8-17)
[10] 胡立伟, 杨锦青, 何越人, 孟玲, 罗振武, 胡澄宇. 城市交通拥塞辐射模型及其对路网服务能力损伤研究. 中国公路学报, 2019, 32(3):145-154(Hu L W, Yang J Q, He Y R, Meng L, Luo Z W, Hu C Y. Urban traffic congestion ratiation model and damage caused to service capacity of road network. China Journal of Highway and Transport, 2019, 32(3):145-154)
[11] Bermudez P.d Z, Kotz S. Parameter estimation of the generalized Pareto distribution-part I & II. Journal of Statistical Planning and Inference, 2010, 140(6):1353-1388
[12] Castillo J D, Serra I. Likelihood inference for generalized Pareto distribution. Computational Statistics & Data Analysis, 2015, 83:116-128
[13] Lee J, Fan Y, Sisson S A. Bayesian threshold selection for extremal models using measures of surprise. Computational Statistics & Data Analysis, 2015, 85:84-99
[14] Babu G J, Toreti A. A goodness-of-fit test for heavy tailed distributions with unknown parameters and its application to simulated precipitation extremes in the Euro-Mediterranean region. Journal of Statistical Planning and Inference, 2016, 174:11-19
[15] Nadarajah S, Afuecheta E, Chan S. A double generalized Pareto distribution. Statistics and Probability Letters, 2013, 83:2656-2663
[16] Park M H, Kim J H T. Estimating extreme tail risk measures with generalized Pareto distribution. Computational Statistics and Data Analysis, 2016, 98:91-104
[17] Chen S, Li Y X, Kim J H, Kim S W. Bayesian change point analysis for extreme daily precipitation. International Journal of Climatology, 2017(37):3123-3137
[18] Susan M, Waititu A G, Mwita P N. Change point analysis in the generalized Pareto distribution. 2019, 197.136.134.32
[19] Drees H, JanBen A, Resnick S I, Wang T D. On a minimum distance procedure for threshold selection in tail analysis. SIAM Journal on Mathematics of Data Science, 2020, 2(1):75-102
[20] Dierckx G, Teugels J L. Change point analysis of extreme values. Environmetrics, 2010, 21:661-686
[21] Meng R. Growth curve analysis and change-points detection in extremes. Doctoral dissertation, King Abdullah University of Science and Technology, 2016
[22] Safari M A M, Masseran N, Ibrahim K. Outliers detection for Pareto distributed data. AIP Conference Proceedings, 2018, 1940(1):020119-1-020119-6
[23] Csörgö M, Horváth L. Limit theorems in change-point analysis. New York:John Wiley & Sons, 1997
[24] Smith R L. Maximum likelihood estimation in a class of nonregular cases. Biometrika, 1985, 72(1):67-90
[25] Shorack G R. Probability for statisticians. Springer US, 2000
[26] Feller W. An introduction to probability theory and its applications. Volume I, Second Edition, New York:John Wiley & Sons, 1968
[27] Jarusková D. Maximum log-likelihood ratio test for a change in three parameter Weibull distribution. Journal of Statistical Planning and Inference, 2007, 137:1805-1815
[28] Rencová M. Change-point detection in temperature series. Doctoral dissertation. Prague:Czech Technical University, 2009
[29] 胡尧, 谌业文, 王旭琴, 刘伟. 广义Pareto分布变点检测重现期预测模型及其应用. 系统工程理论与实践, 2020, Doi:10.12011/SETP2020-0098(Hu Y, Chen Y W, Wang X Q, Liu W. Generalized Pareto distribution change point detection model and its application in modeling return period prediction. Systems Engineering-theory & Practice, 2020, Doi:10.12011/SETP2020-0098)

[1]张香云, 程维虎. 二项-广义 Pareto 复合极值分布模型的统计推断 [J]. 应用数学学报(英文版), 2012, (3): 560-572.
[2]赵旭, 程维虎, 李婧兰. 广义Pareto分布的广义有偏概率加权矩估计方法[J]. 应用数学学报(英文版), 2012, (2): 321-329.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14925
相关话题/统计 检验 应用数学 数据 人才