删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

广义Pareto分布变点检测似然比模型

本站小编 Free考研考试/2021-12-27

广义Pareto分布变点检测似然比模型 胡尧1,2, 谌业文31 贵州大学数学与统计学院, 贵阳 550025;
2 贵州大学贵州省公共大数据重点实验室, 贵阳 550025;
3 中山大学数学学院, 广州 510000 A Likelihood Ratio Model for Change Point Detection of Generalized Pareto Distribution HU Yao1,2, CHEN Yewen31 School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China;
2 Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China;
3 School of Mathematics, Sun Yat-sen University, Guangzhou 510000, China
摘要
图/表
参考文献
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(2491 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要为检测极端事件的状态变化,基于似然比方法研究了广义Pareto分布(Generalized Pareto Distribution,GPD)变点检测模型.考虑三参数GPD变点的检验问题,提出了最大似然比检验统计量.通过证明参数变换后GPD的对数似然和检验统计量的一系列极限性质,得到了检验统计量的渐近分布.通过模拟研究,对该方法的有限样本性质进行了评价,实例分析也验证了该方法的可行性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-01-06
PACS:O212.1
基金资助:国家自然科学基金(11661018),贵州省科技计划项目(黔科合平台人才[2017]5788号),贵州省数据驱动建模学习与优化创新团队(黔科合平台人才[2020]5016号),全国统计科学研究(2014LZ46),贵州省自然科学基金(黔科合J字[2014]2058号)资助项目.

引用本文:
胡尧, 谌业文. 广义Pareto分布变点检测似然比模型[J]. 应用数学学报, 2021, 44(4): 553-573. HU Yao, CHEN Yewen. A Likelihood Ratio Model for Change Point Detection of Generalized Pareto Distribution. Acta Mathematicae Applicatae Sinica, 2021, 44(4): 553-573.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I4/553


[1] Holger Dette, Josua Gösmann. A Likelihood ratio approach to sequential change point detection for a general class of parameters. Journal of the American Statistical Association, 2019, 00(0):1-17
[2] Baranowski R, Chen Y N, Fryzlewicz P. Narrowest-over-threshold detection of multiple change points and change-point-like features. Journal of the Royal Statistical Society, 2019, 81(3):649-672
[3] Yu M, Ruggieri E. Change point analysis of global temperature records. International Journal of Climatology, 2019, 39(8):3679-3688
[4] Coles S. An introduction to statistical modeling of extreme values. London:Springer US, 2001
[5] Kiriliouk A, Rootzén H, Segers J, Wadsworth J L. Peaks over thresholds modeling with multivariate generalized Pareto distributions. Technometrics, 2019, 61(1):123-135
[6] Chen B Y, Zhang K Y, Wang L P, Jiang S, Liu G L. Generalized extreme value-Pareto distribution function and its applications in ocean engineering. China Ocean Engineering, 2019, 33(2):127-136
[7] Mo C X, Ruan Y L, He J Q, Jin J L, Liu P, Sun G K. Frequency analysis of precipitation extremes under climate change. International Journal of Climatology, 2019, 39(12):1373-1387
[8] 刘新红, 孟生旺, 李政宵. 地震损失风险的Copula混合分布模型及其应用. 系统工程理论与实践, 2019, 39(7):1855-1866(Liu X H, Meng S W, Li Z X. Copula-mixed distribution model and its application in modeling earthquake loss in China. Systems Engineering-theory & Practice, 2019, 39(7):1855-1866)
[9] 崔玫意, 张玉虎, 陈秋华. Box-Cox正态分布及其在降雨极值分析中的应用. 数理统计与管理, 2017, 36(1):8-17(Cui M Y, Zhang Y H, Chen Q H. Box-Cox normal distribution and its application in rainfall extreme value. Journal of Applied Statistics and Management, 2017, 36(1):8-17)
[10] 胡立伟, 杨锦青, 何越人, 孟玲, 罗振武, 胡澄宇. 城市交通拥塞辐射模型及其对路网服务能力损伤研究. 中国公路学报, 2019, 32(3):145-154(Hu L W, Yang J Q, He Y R, Meng L, Luo Z W, Hu C Y. Urban traffic congestion ratiation model and damage caused to service capacity of road network. China Journal of Highway and Transport, 2019, 32(3):145-154)
[11] Bermudez P.d Z, Kotz S. Parameter estimation of the generalized Pareto distribution-part I & II. Journal of Statistical Planning and Inference, 2010, 140(6):1353-1388
[12] Castillo J D, Serra I. Likelihood inference for generalized Pareto distribution. Computational Statistics & Data Analysis, 2015, 83:116-128
[13] Lee J, Fan Y, Sisson S A. Bayesian threshold selection for extremal models using measures of surprise. Computational Statistics & Data Analysis, 2015, 85:84-99
[14] Babu G J, Toreti A. A goodness-of-fit test for heavy tailed distributions with unknown parameters and its application to simulated precipitation extremes in the Euro-Mediterranean region. Journal of Statistical Planning and Inference, 2016, 174:11-19
[15] Nadarajah S, Afuecheta E, Chan S. A double generalized Pareto distribution. Statistics and Probability Letters, 2013, 83:2656-2663
[16] Park M H, Kim J H T. Estimating extreme tail risk measures with generalized Pareto distribution. Computational Statistics and Data Analysis, 2016, 98:91-104
[17] Chen S, Li Y X, Kim J H, Kim S W. Bayesian change point analysis for extreme daily precipitation. International Journal of Climatology, 2017(37):3123-3137
[18] Susan M, Waititu A G, Mwita P N. Change point analysis in the generalized Pareto distribution. 2019, 197.136.134.32
[19] Drees H, JanBen A, Resnick S I, Wang T D. On a minimum distance procedure for threshold selection in tail analysis. SIAM Journal on Mathematics of Data Science, 2020, 2(1):75-102
[20] Dierckx G, Teugels J L. Change point analysis of extreme values. Environmetrics, 2010, 21:661-686
[21] Meng R. Growth curve analysis and change-points detection in extremes. Doctoral dissertation, King Abdullah University of Science and Technology, 2016
[22] Safari M A M, Masseran N, Ibrahim K. Outliers detection for Pareto distributed data. AIP Conference Proceedings, 2018, 1940(1):020119-1-020119-6
[23] Csörgö M, Horváth L. Limit theorems in change-point analysis. New York:John Wiley & Sons, 1997
[24] Smith R L. Maximum likelihood estimation in a class of nonregular cases. Biometrika, 1985, 72(1):67-90
[25] Shorack G R. Probability for statisticians. Springer US, 2000
[26] Feller W. An introduction to probability theory and its applications. Volume I, Second Edition, New York:John Wiley & Sons, 1968
[27] Jarusková D. Maximum log-likelihood ratio test for a change in three parameter Weibull distribution. Journal of Statistical Planning and Inference, 2007, 137:1805-1815
[28] Rencová M. Change-point detection in temperature series. Doctoral dissertation. Prague:Czech Technical University, 2009
[29] 胡尧, 谌业文, 王旭琴, 刘伟. 广义Pareto分布变点检测重现期预测模型及其应用. 系统工程理论与实践, 2020, Doi:10.12011/SETP2020-0098(Hu Y, Chen Y W, Wang X Q, Liu W. Generalized Pareto distribution change point detection model and its application in modeling return period prediction. Systems Engineering-theory & Practice, 2020, Doi:10.12011/SETP2020-0098)

[1]张香云, 程维虎. 二项-广义 Pareto 复合极值分布模型的统计推断 [J]. 应用数学学报(英文版), 2012, (3): 560-572.
[2]赵旭, 程维虎, 李婧兰. 广义Pareto分布的广义有偏概率加权矩估计方法[J]. 应用数学学报(英文版), 2012, (2): 321-329.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14925
相关话题/统计 检验 应用数学 数据 人才