删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

标准多重二部图中点不交的重4圈

本站小编 Free考研考试/2021-12-27

标准多重二部图中点不交的重4圈 王雪, 高云澍宁夏大学数学统计学院, 银川 750021 Vertex-disjoint Quadrilaterals in Standard Bipartite Multigraphs WAGNG Xue, GAO YunshuSchool of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
摘要
图/表
参考文献
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(308 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要若多重二部图中不同划分的任意一对点之间至多包含两条边,则称其为标准多重二部图.令D是一个标准多重二部图,使得|V1|=|V2|=n≥2,其中n是正整数.我们证明了若D的最小度至少是3n/2,则D一定包含n/2个点不交的4圈,并且当n为奇数时,上述n/2个4圈中的前n-3/2}中的每条边都是重边,剩余的一个4圈中至少有3条边是重边;当n为偶数时,前n-4/2个4圈的每条边都是重边,剩余的两个4圈中每个至少有3条边是重边,除非有一个例外.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-11-25
PACS:05C35
05C70
基金资助:国家自然科学基金(12061056,11561054),宁夏自然科学基金(2021AAC05001),宁夏回族自治区青年拔尖人才资助项目.

引用本文:
王雪, 高云澍. 标准多重二部图中点不交的重4圈[J]. 应用数学学报, 2021, 44(3): 383-392. WAGNG Xue, GAO Yunshu. Vertex-disjoint Quadrilaterals in Standard Bipartite Multigraphs. Acta Mathematicae Applicatae Sinica, 2021, 44(3): 383-392.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I3/383


[1] Bollobás B. Extremal Graph Theory. London: Academic Press, 1978
[2] Czygrinow A, Kierstead H A, Molla T. On directed versions of the Corrádi-Hajnal Corollary. European J. Combin., 2014, 42: 1–14
[3] Wang H. Directed bipartite graphs containing every possible pair of directed cycles. Ars Combin., 2001, 60: 293–306
[4] Little C, Teo K, Wang H. On a conjecture on directed cycles in a directed bipartite graph. Graphs Combin., 1997, 13: 267–273
[5] Zhang D H, Wang H. Disjoint directed quadrilaterals in a directed bipartite graph. Manuscript, 2018
[6] Gao Y S, Wang H, Zou Q S. Disjoint directed cycles with specified lengths in directed bipartite graph. Discrete Math., 2021, 344: 112276
[7] Wang H. Disjoint directed cycles in directed graphs. Discrete Math., 2020, 343: 111927
[8] Wang H. Digraphs containing every possible pair of dicycles. J. Graph Theory, 2000, 34: 833–877
[9] Wang H. Independent directed triangles in a directed graph. Graphs Combin., 2000, 16: 453–462
[10] Gao Y S. Zou Q S, Ma L Y. Vertex-disjoint quadrilaterals in multigraphs. Graphs Combin., 2017, 33: 901–912
[11] Zhang D H, Wang H. Disjoint directed quadrilaterals in a directed graph. J. Graph Theory, 2005, 50: 91–104
[12] Wang H. On the maximum number of independent cycles in a bipartite graph. J. Comb. Theory, 1996, 67: 152–164
[13] Wang H. Proof of the Erdös-Faudree conjecture on quadrilaterals. Graphs Combin., 2010, 26: 833–877
[14] Corrádi K, Hajnal A. On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hung., 1963, 14: 423–439
[15] Erdös P. Some recent combinatorial problems. University of Bielefeld: Technical Report, 1990
[16] Wang H. Proof of a conjecture on cycles in a bipartite graph. J. Graph Theory, 1999, 31: 333–343

[1]马莉燕, 周海娟, 高云澍. 无爪图中点不相交的特殊四阶子图[J]. 应用数学学报, 2016, 39(6): 890-896.
[2]陈祥恩, 郭虹园, 王治文. mC4的顶点被多重色集合可区别的一般边染色[J]. 应用数学学报, 2015, 38(3): 406-412.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14912
相关话题/应用数学 统计 宁夏大学 人才 数学