删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类奇异摄动边值问题的一致收敛迎风差分方法

本站小编 Free考研考试/2021-12-27

一类奇异摄动边值问题的一致收敛迎风差分方法 杨继明湖南工程学院计算科学与电子学院, 湘潭 411104 Uniformly Convergent Upwind Difference Approximation for a Singularly Perturbed Boundary Value Problem YANG JimingSchool of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 411104, China
摘要
图/表
参考文献
相关文章(3)
点击分布统计
下载分布统计
-->

全文: PDF(336 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要对于一类奇异摄动边值问题,基于等分布弧长控制函数构建网格,提出了一种迎风差分方法.利用先验截断误差估计,基于离散比较原理和障碍函数技巧,证明了该方法得到的逼近解在最大模下是不依赖于摄动参数且一阶一致收敛的.收敛性分析是在整个区域上进行的,不需要对区域进行子区域的划分.为了验证理论分析,给出了数值实验结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-01-09
PACS:65L10
65L12
基金资助:湖南省自然科学基金(2020JJ4242,2019JJ50105)资助项目.

引用本文:
杨继明. 一类奇异摄动边值问题的一致收敛迎风差分方法[J]. 应用数学学报, 2021, 44(2): 269-278. YANG Jiming. Uniformly Convergent Upwind Difference Approximation for a Singularly Perturbed Boundary Value Problem. Acta Mathematicae Applicatae Sinica, 2021, 44(2): 269-278.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I2/269


[1] Barenblatt G I, Zheltov I P, Kochina I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech., 1960, 24:1286-1303
[2] Miller J H. Singular perturbation problems in Chemical Physics. New York:John Wiley and Sons, 1997
[3] Roos H G, Stynes M, Tobiska L. Robust numerical methods for singularly perturbed differential equations:convection-diffusion-reaction and flow problems. Berlin:Springer Science & Business Media, 2008
[4] Pao C. Nonlinear parabolic and elliptic equations. New York:Plenum Press, 1992
[5] Kellogg R B, Tsan A. Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comp., 1978, 32:1025-1039
[6] Chen Y. Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution. J. Comp. Appl. Math., 2003, 159:25-34
[7] Qiu Y, Sloan D M and Tang T. Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution:analysis of convergence. J. Comp. Appl. Math., 2000, 116:121-143
[8] Linss T. Uniforming pointwise convergence of finite difference schemes using grid equidistribution. Comp., 2001, 66:27-39
[9] Chen Y. Uniform convergence analysis of finite difference approximations for singularly perturbed problems on an adapted grid. Adv. Comp. Math., 2006, 24:197-212
[10] Kopteva N and Stynes M. A robust adaptive method for a quasi-linear one dimensional convectiondiffusion problem. SIAM J. Numer. Anal., 2001, 39:1446-1467
[11] Qiu Y and Sloan D M. Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid. J. Comp. Appl. Math., 1999, 101:1-25
[12] Linβ T. Layer-adapted meshes for convection-diffusion problems. Comp. Meth. Appl. Mech. Engrg., 2003, 192:1061-1105
[13] Andreev V B and Savin I A. On the convergence, uniform with respect to the small parameter of A. A. Samarskii's monotone scheme and its modifications. Comp. Math. Math. Phys., 1995, 35:581-591
[14] Andreev V B and Kopteva N. On the convergence, uniform with respect to a small parameter, of monotone three-point difference approximation. Differ. Uravn., 1998, 34:921-929
[15] Mohapatra J, Natesan S. Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid. Numer. Math. Theory. Method Appl., 2009, 3(1):1-22
[16] Mohapatra J, Natesan S. Parameter-uniform numerical method for global solution and global normalized flux of singularly perturbed boundary value problems using grid equidistribution. Comp. Math. Appl., 2010, 60:1924-1939
[17] Stynes M and Roos H. The midpoint upwind scheme. Appl. Numer. Math., 1997, 23(3):361-374
[18] Beckett G and Mackenzie J A. Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math., 2000, 35(2):87-109
[19] Zhang J, Liu X. Convergence of a finite element method on a Bakhvalov-type mesh for singularly perturbed reaction diffusion equation. Appl. Math. Comp., 2020, 385, 125403
[20] Avijit D, Natesan S. SDFEM for singularly perturbed boundary-value problems with two parameters. J. Appl. Math. Comp., 2020, 64:591-614

[1]胡杨利, 李应求. 随机环境中分枝随机游动的极限定理[J]. 应用数学学报, 2015, 38(2): 317-329.
[2]王家赠, 薛晓峰. 网络上SIR型传播的随机建模与极限定理[J]. 应用数学学报(英文版), 2012, (4): 663-676.
[3]袁益让. 可压缩两相驱动问题的迎风差分格式及其理论分析[J]. 应用数学学报(英文版), 2002, 25(3): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14890
相关话题/应用数学 统计 实验 传播 网络