删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

四阶Burgers方程的非线性边值-初值问题

本站小编 Free考研考试/2021-12-27

四阶Burgers方程的非线性边值-初值问题 张金良1, 王飞2, 王明亮1,31. 河南科技大学数学与统计学院, 洛阳 471000;
2. 黄河水利职业技术学院, 开封 475004;
3. 兰州大学数学与统计学院, 兰州 730000 The Nonlinear Boundary-initial Value Problem for the Fourth Order Burgers Equation ZHANG Jinliang1, WANG Fei2, WANG Mingliang1,31. School of Mathematics & Statistics, Henan University of Science & Technology, Luoyang 471000, China;
2. Yellow River Conservancy Technical Institute, Kaifeng 475004, China;
3. School of Mathematics & Statistcs, Lanzhou University, Lanzhou 730000, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(289 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文以变阻尼四阶Burgers方程为例,来说明简化的齐次平衡法是构造某些非线性发展方程非线性边值-初值问题非常有用的方法.首先借助于简化的齐次平衡法,推导出变阻尼四阶Burgers方程与四阶线性方程解之间的非线性变换及其逆变换;由此导出一个新的半无限直线上非线性边值-初值问题;最后讨论了五个特殊的变阻尼四阶Burgers方程,得到了这些非线性边值-初值问题的精确解,特别地,得到了柱(球)四阶Burgers方程非线性边值-初值问题的衰减解.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-02-01
PACS:O175.2
基金资助:国家自然科学基金(51675161)资助项目.

引用本文:
张金良, 王飞, 王明亮. 四阶Burgers方程的非线性边值-初值问题[J]. 应用数学学报, 2020, 43(6): 1029-1041. ZHANG Jinliang, WANG Fei, WANG Mingliang. The Nonlinear Boundary-initial Value Problem for the Fourth Order Burgers Equation. Acta Mathematicae Applicatae Sinica, 2020, 43(6): 1029-1041.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I6/1029


[1] Burgers J M. A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics, 1948, 1:171-199
[2] Burgers J M. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, in:F.T.M. Nieuwstadt, et al. (Eds.), Selected Papers of J. M. Burgers, Netherlands:Kluwer Academic Publishers, 1995, 281-334
[3] Kraenkel R A, Pereira J G, Manna M A. Nonlinear surface-wave excitations in the Bernard-Marangoni system. Phys. Rev. A, 1992, 46:4786-4790
[4] Ablowitz M J, De Lillo S. The Burgers equation under deterministic and stochastic forcing. Physica D, 1996, 92:245-259
[5] Gurarie V, Migdal A. Instantons in the Burgers equation. Phys. Rev. E, 1996, 54:4908-4914
[6] Mamun A A, Shukla P K. Cylindrical and spherical dust ion-acoustic shock waves in dusty plasmas. Europhysics Letters, 2009, 87:25001
[7] Xue J K. Cylindrical and Spherical Ion-acoustic Solitary Waves with Dissipative Effect. Phys Lett A, 2004, 322:225-230
[8] Rahman M M, Alam M S, Mamun A A. Cylindrical and Spherical Positron-Acoustic Shock Waves in Nonthermal Electron-Positron-Ion Plasmas. Braz. J. Phys., 2015, 45:314-320
[9] Shah M G., Rahman M M, Hossen M R, Mamun A A. Properties of Cylindrical and Spherical Heavy Ion-Acoustic Solitary and Shock Structures in a Multi-Species Plasma with Superthermal Electrons. Plasma Physics Reports, 2016, 42:168
[10] Liu H F, Wang S Q, Wang Z L, Yang F Z, Liu Y, Li S L. Propagation of Cylindrical and Spherical Dust-ion Acoustic Solitary Waves in a Relativistic Dusty Plasma. Advances in Space Research, 2013, 51:2368-2373
[11] Shi Y R, Yang H J, Duan W S, Li K P. Analytical solutions of cylindrical and spherical Burgers equations. Journal of Northwest Normal University, 2007, 43 (4):37-40
[12] Li X Z, Zhang J L, Wang M L. Decay mode solutions to (2+1)-Dimensional Burgers equation, cylindrical Burgers equation and spherical Burgers equation. Journal of Applied Mathematics and Physics, 2017, 5:1009-1015
[13] Li X Z, Wang M L. Exact solution of a cylindrical Burgers equation and a spherical equation with variable dissipative coefficient. Mathematica Applicata, 2017, 30(2):392-395
[14] Wang Y Y, Zhang J F. Cylindrical KP-Burgers Equation for Two-Temperature Ions in Dusty Plasma with Dissipative Effects and Transverse Perturbations. Commun. Theor. Phys., 2006, 46:313-318
[15] Wang M L. Higher order Burgers Equations. Acta Math. Sci., 1986, 8B:353-360
[16] Wang M L, Jiang S G, Bai X. A nonlinear transformation and a boundary-initial value problem for a class of nonlinear convection-diffusion equations. Acta Math. Sci., 2001, 21B:114-120
[17] Wazwaz A M. Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation:Multiple kink solutions. Alexandria Engineering Journal, 2017, http://dx.doi.org/10.1016/j.aej.2017.04.003
[18] Wang L T, Wang M L. Exact solutions to nonlinear boundary-initial value problem for fourth order Burgers Equations. Journal of Yantai University, 1994, 7(1):1-5
[19] Wang M L, Li X Z. Simplified Homogeneous balance method and its application to the Whitham-Broer-Kaup model equations. J. Appl. Math. Phys., 2014, 2:823-827
[20] Wang M L, Zhang J L, Li X Z. Decay Mode Solutions to Cylindrical KP Equation. Applied Mathematics Letters, 2016, 62:29-34
[21] Wang M L, Zhang J L, Li X Z. N-dimensional Auto-Backlund transformation and exact solutions to n-dimensional Burgers system. Applied Mathematics Letters, 2017, 63:46-52
[22] Wang M L, Li Z X, Zhang J L. Two-soliton solution to a generalized KP equation with variable coefficients. Applied Mathematics Letters, 2018, 76:21-27
[23] Zhang J L, Wang M L. Decay Mode Solution of Nonlinear Boundary-initial Value Problems for the Cylindrical (Spherical) Boussinesq-Burgers Equations. Applied Mathematics Letters, 2019, 89:50-57

[1]梁建秀, 张雪霞, 石漂漂. 周期演化域上一个禽流感模型的动力学分析[J]. 应用数学学报, 2021, 44(1): 61-68.
[2]杜美华. 具强非线性耦合源的退化抛物方程组的Cauchy问题[J]. 应用数学学报, 2020, 43(6): 939-948.
[3]张卫国, 杨萌. 耦合DSW方程的周期波解与孤波解[J]. 应用数学学报, 2020, 43(5): 792-820.
[4]李远飞. 非线性边界条件下高维抛物方程解的全局存在性及爆破现象[J]. 应用数学学报, 2019, 42(6): 721-735.
[5]解金鑫, 徐森, 刘翻丽, 任建龙. 一类确定波动方程势函数的反问题[J]. 应用数学学报, 2019, 42(5): 670-683.
[6]毛辉, 张孟霞. 两个(2+1)-维超对称系统的Bäcklund变换和Lax对[J]. 应用数学学报, 2019, 42(5): 712-720.
[7]叶专. Boussinesq方程的一个改进的Beale-Kato-Majda准则[J]. 应用数学学报, 2019, 42(4): 482-491.
[8]李志广. 一类非线性抛物变分不等式解的存在性[J]. 应用数学学报, 2019, 42(4): 550-563.
[9]郑伟珊. 比例Volterra积分方程的切比雪夫谱配置法[J]. 应用数学学报, 2019, 42(3): 400-409.
[10]裴瑞昌, 张吉慧. 一类具有组合非线性项的四阶椭圆方程的多重解[J]. 应用数学学报, 2019, 42(2): 167-178.
[11]樊自安, 吴庆华. 包含次临界和临界指数以及加权函数的Kirchhoff方程[J]. 应用数学学报, 2019, 42(2): 278-288.
[12]李艳玲, 李瑜, 郭改慧. 一类混合比率依赖食物链扩散模型的Hopf分支[J]. 应用数学学报, 2019, 42(1): 1-14.
[13]周翔宇, 吴建华. 一类带Michaelis-Menten收获项的Holling-IV捕食-食饵模型的定性分析[J]. 应用数学学报, 2019, 42(1): 32-42.
[14]张申贵. 一类变指数基尔霍夫型方程的无穷多解[J]. 应用数学学报, 2018, 41(6): 801-810.
[15]梁建秀. 一类具有自由边界的反应扩散对流的SI传染病模型[J]. 应用数学学报, 2018, 41(5): 698-710.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14836
相关话题/应用数学 数学 统计学院 统计 学报