删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

风险度量ES半参数模型估计及其应用

本站小编 Free考研考试/2021-12-27

风险度量ES半参数模型估计及其应用 管欣1, 周勇21. 上海财经大学统计与管理学院, 上海 200433;
2. 华东师范大学经管学部交叉科学研究院及统计学院, 上海 200062 Semiparametric Estimation of Expected Shortfall and Its Application GUAN Xin1, ZHOU Yong21. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China;
2. Academy of Statistics and Interdisciplinary Sciences, East China Normal University, Shanghai 200062, China
摘要
图/表
参考文献
相关文章(15)
点击分布统计
下载分布统计
-->

全文: PDF(700 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要预期不足或称期损(Expected Shortfall,ES)是近几年发展起来的重要风险度量工具,对其进行建模和估计是统计学和金融计量经济学研究的前沿问题之一.本文基于平均剩余寿命模型提出一种ES估计的半参数模型,并使用广义估计方程(GEE)的方法估计参数.同时建立了严平稳α混合相依序列下参数估计的大样本理论.本文模型的意义在于可以研究资产组合的风险来源以及各风险因素对ES大小的影响程度.最后,将本文的模型应用到金融股票市场的风险评估中,结果表明此模型可以对某些金融市场现象作出合理的解释,是一个灵活且合理的金融计量统计模型.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-05-21
PACS:O212.7
基金资助:国家自然科学重大研究计划重点项目(91546202);国家自然科学基金委重点项目(71931004);上海财经大学研究生创新计划(CXJJ-2017-430)资助项目.

引用本文:
管欣, 周勇. 风险度量ES半参数模型估计及其应用[J]. 应用数学学报, 2019, 42(6): 744-760. GUAN Xin, ZHOU Yong. Semiparametric Estimation of Expected Shortfall and Its Application. Acta Mathematicae Applicatae Sinica, 2019, 42(6): 744-760.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I6/744


[1] Artzner P, Delbaen F, Eber J M, Heath D. Thinking coherently. Risk, 1997, 10(11):68-71
[2] Artzner P, Delbaen F, Eber J M, Heath D. Coherent measures of risk. Mathematical Finance, 1999, 9(3):203-228
[3] Inui K, Kijima M. On the significance of expected shortfall as a coherent risk measure. Journal of Banking and Finance, 2005, 29(4):853-864
[4] Yamai Y, Yoshiba T. Comparative analyses of expected shortfall and value-at-risk:Their Estimation Error, Decomposition, and Optimization. Monetary and Economic Studies, 2002, 20(1):87-121
[5] 刘晓倩, 周勇. 金融风险管理中ES度量的非参数方法的比较及其应用. 系统工程理论与实践, 2011, 31(4):631-642(Liu X Q, Zhou Y. Nonparametric estimation and comparative analyses of ES in risk measure with application. Systems Engineering theory and Practice, 2011, 31(4):631-642)
[6] Chen G M, Choi Y K, Zhou Y. Nonparametric estimation of structural change points in volatility models for time series. Journal of Econometrics, 2005, 126(1):79-114
[7] 谢尚宇, 汪寿阳, 周勇. 金融危机下带传染效应的违约预报. 管理科学学报, 2011, 14(1):1-12(Xie S Y, Wang S Y, Zhou Y. Default prediction with credit contagion under financial crisis. Journal of Management Sciences in China, 2011, 14(1):1-12)
[8] Engle R F, Manganelli S. CAViaR:Conditional autoregressive value at risk by regression quantiles. Journal of Business and Economics Statistics, 2004, 22:367-381
[9] Duffie D, Pan J. An overview of value at risk. Journal of Derivatives, 1997, 4(3):7-49
[10] McNeil A J, Frey R. Estimation of tail-related risk measures for heteroscedastic financial time series:an extreme value approach. Journal of Empirical Finance, 2000, 7(3):271-300
[11] 王艺馨, 周勇. 极端情况下对我国股市风险的实证研究. 中国管理科学, 2012, 20(3):20-27(Wang Y X, Zhou Y. The empirical Study of china's Stock Market Risk in Extreme Situations. Chinese Journal of Management Science, 2012, 20(3):20-27)
[12] Chen S X. Nonparametric Estimation of Expected Shortfall. Journal of Financial Econometrics, 2008, 6(1):87-107
[13] Filho M C, Yao F, Torero M. Nonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory. Econometric Theory,???, 34(1):23-67
[14] Cai Z W, Wang X. Nonparametric estimation of conditional VaR and expected shortfall. Journal of Econometrics, 2008, 147(1):120-130
[15] Rosen D, Saunders D. Risk factor contributions in portfolio credit risk models. Journal of Banking and Finance, 2010, 34(2):336-349
[16] Kuan C, Yeh J H, Hsu Y C. Assessing value at risk with CARE, the conditional autoregression expectile models. Journal of Econometrics, 2009, 150(2):261-270
[17] Cai J H, He H J, Song X Y, Sun L Q. An additive-multiplicative mean residual life model for right-censored data. Biometrical, 2017, 59(3):579-592
[18] Chen Y Q, Cheng S. Semiparametric Regression Analysis of Mean Residual Life with Censored Survival Data. Biometrika, 2005, 92(1):19-29
[19] Cheng Y Q, Cheng S. Linear life expectancy regression with censored data. Biometrika, 2006, 93(2):303-313
[20] Sun L Q, Zhang Z G. A class of transformed mean residual life models with censored survival data. Journal of the Americal Statistical Association, 2009, 104(486):803-815
[21] Lin Z Y, Lu C R. Limit Theory for Mixing Dependent Random Variables. New York, Beijing:Science Press, 1996
[22] Valentine G C, Jeantheau T, Larédo C. Stochastic Volatility Models as Hidden Markov Models and Statistical Applications. Bernoulli, 2000, 6(6):1051-1079
[23] Masry E, Tjostheim. Nonparametric Estimation and Identification of Nonlinear ARCH Time Series:Strong Convergence and Asymptotic Normality. Econometric Theory, 1995, 11(2):258-289
[24] Cai Z W. Regression Quantiles for Time Series Data. Econometric Theory, 2002, 18(1):169-192
[25] 周勇. 广义估计方程估计方法. 科学出版社, 2013(Zhou Y. Generalized estimation equation estimation method. Beijing:Science Press, 2013)
[26] Yu B. Rates of Convergence for Empirical Processes of Stationary Mixing Sequences. The Annals of Probability, 1994, 22(1):94-116
[27] 范剑青, 姚琦伟. 非线性时间序列. 北京:高等教育出版社, 2005(Fan J Q, Yao Q W. Nonlinear Time Series. Beijing:Higher Education Press, 2005)
[28] Xing G D, Yang S C, Chen A W. A maximal moment inequality for α-mixing sequences and its applications. Statistics and Probability Letters, 2009, 79(12):1429-1437
[29] Galvao J A F, Gabriel M R, Olmo J. Threshold quantile autoregressive models. Journal of Time Series Analysis, 2011, 32(3):253-267
[30] Dehling H, Mikosch T, Sorensen M. Empirical Process Techniques for Dependent Data. Bosten:Birkhauser Press, 2002
[31] Volkonskii V A, Rozanov Y A. Some Limit Theorems for Random Functions, I. Theory of Probability and Its Applications, 1959, 4(2):178-197

[1]邱明悦, 胡涛, 崔恒建. 双区间删失下新冠病毒肺炎潜伏期分布的参数估计[J]. 应用数学学报, 2020, 43(2): 200-210.
[2]孙小丹, 霍希, 吴建宏. 关于大规模使用康复者血浆治疗COVID-19重症患者的模拟研究[J]. 应用数学学报, 2020, 43(2): 211-226.
[3]李倩, 肖燕妮, 吴建宏, 唐三一. COVID-19疫情时滞模型构建与确诊病例驱动的追踪隔离措施分析[J]. 应用数学学报, 2020, 43(2): 238-250.
[4]刘小惠, 何阳, 麻先思, 罗良清. 有关新冠肺炎潜伏期和疑似期的统计数据分析:基于湖北省外2172条确诊数据[J]. 应用数学学报, 2020, 43(2): 278-294.
[5]谭键滨, 蒋宇康, 田婷, 王学钦. P-SIHR概率图模型:一个可估计未隔离感染者数的适用于COVID-19的传染病模型[J]. 应用数学学报, 2020, 43(2): 365-382.
[6]李满兰, 童小娇, 孙海琳. 一类分布鲁棒线性决策随机优化研究[J]. 应用数学学报, 2020, 43(1): 129-144.
[7]孔祥超, 吴刘仓, 刘慧娟. 再生散度分布族下联合方位与散度混合专家回归模型的参数估计[J]. 应用数学学报, 2019, 42(6): 845-857.
[8]韩姣, 夏志明. 线性面板模型中的变点估计[J]. 应用数学学报, 2019, 42(6): 736-743.
[9]刘妍岩, 王蕊, 赵燕, 邹君. 考虑基因与基因间的交互作用的基因组选择方法研究[J]. 应用数学学报, 2019, 42(5): 684-700.
[10]何其祥, 林仁鑫. 失效原因缺失的加速失效时间模型下竞争风险数据的半参数估计[J]. 应用数学学报, 2019, 42(3): 385-399.
[11]雷庆祝, 秦永松. 强混合样本下非参数回归函数的经验似然推断[J]. 应用数学学报, 2019, 42(2): 179-196.
[12]李永明, 周勇. 基于右删失宽相依数据的Kaplan-Meier估计和风险率估计的渐近性质[J]. 应用数学学报, 2019, 42(1): 71-84.
[13]杜彦斌, 戴家佳, 金君. 复发事件下一类加性乘性转移模型[J]. 应用数学学报, 2018, 41(5): 642-652.
[14]孟维维, 李俊平. 带灾难和移民的n维分枝过程[J]. 应用数学学报, 2018, 41(5): 609-619.
[15]魏玲, 孟庆余. 一类非线性随机四阶抛物型方程的解的p阶矩指数稳定性[J]. 应用数学学报, 2018, 41(5): 632-641.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14756
相关话题/应用数学 统计 数据 金融 序列