删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类带有宽负相依索赔额的新风险模型损失过程的精细大偏差

本站小编 Free考研考试/2021-12-27

一类带有宽负相依索赔额的新风险模型损失过程的精细大偏差 唐风琴1, 白建明2, 尹晓玲21 淮北师范大学数学科学学院, 淮北 235000;
2 兰州大学管理学院, 兰州 730000 Precise Large Deviations for Loss Process of a New Risk Model with Extended Negatively Dependent Claim Sizes TANG Fengqin1, BAI Jianming2, YIN Xiaoling21 School of Mathematics Sciences, Huaibei Normal University, Huaibei 235000;
2 School of Management, Lanzhou University, Lanzhou 730000
摘要
图/表
参考文献
相关文章(6)
点击分布统计
下载分布统计
-->

全文: PDF(341 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究一类基于保单进入过程的风险模型,客户在其保期内可索赔多次.假设每个顾客的索赔额是宽负相依的且服从重尾分布,不同顾客之间的索赔额是相互独立的.本文得到了损失过程的大偏差.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-03-14
PACS:O211.65
O211.66
基金资助:国家自然科学基金(71171103)以及安徽省高校自然科学研究重点项目(KJ2017A377)资助.

引用本文:
唐风琴, 白建明, 尹晓玲. 一类带有宽负相依索赔额的新风险模型损失过程的精细大偏差[J]. 应用数学学报, 2019, 42(1): 43-54. TANG Fengqin, BAI Jianming, YIN Xiaoling. Precise Large Deviations for Loss Process of a New Risk Model with Extended Negatively Dependent Claim Sizes. Acta Mathematicae Applicatae Sinica, 2019, 42(1): 43-54.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I1/43


[1] Li Z H, Kong X B. A new risk model based on policy entrance process and its weak convergence properties. Appl. Stoch. Model. Bus., 2007, 3(23):235-246
[2] Chen Y, Ng K W. The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims. Insur. Math. Econ., 2007, 40(3):415-423
[3] 杨洋, 林金官, 高庆武. 时间相依更新风险模型中无限时绝对破产概率的渐近性. 中国科学:数学, 2013, 2(43):173-184(Yang Y, Lin J G, Gao Q W. Asymptotics for the infinite-time absolute ruin probabilities in timedependent renewal risk models. Sci. China. Math., 2013, 2(43):173-184)
[4] Liu X J, Yu C J, Gao Q W. Precise large deviations of aggregate claim amount in a dependent renewal risk model. Commun. Stat-Theor. M., 2017, 5(46):2354-2363
[5] Klüppelberg C, Mikosch T. Large deviations of heavy-tailed random sums with applications in insurance and finance. J. Appl. Probab., 1997, 34(2):293-308
[6] Mikosch T, Nagaev A V. Large deviations heavy-tailed sums with applications in insurance. Extremes, 1998, 1(1):81-110
[7] Tang Q. Insensitivity to negative dependence of the asymptotic behavior of precise large deviations. Electron. J. Probab., 2006, 11:107-120
[8] Chen Y, Zhang W P. Large deviations for random sums of negatively dependent random variables with consistently varying tails. Stat. Probabil. Lett., 2007, 5(77):530-538
[9] Chen Y Q, Yuen K C, Ng K W. Precise Large Deviations of Random Sums in Presence of Negative Dependence and Consistent Variation. Methodol. Comput. Appl., 2011, 13(4):821-833
[10] Liu L. Precise large deviations for dependent random variables with heavy tails. Stat. Probabil. Lett., 2009, 79(9):1290-1298
[11] Ng K, Tang Q, Yan J, Yang H. Precise large deviations for sums of random variables with consistently varying tails. J. Appl. Probab., 2004, 1(41):93-107
[12] Tang Q. Insensitivity to negative dependence of asymptotic tail probabilities of sums and maxima of sums. Stoch. Anal. Appl., 2008, 3(26):435-450
[13] Tang Q, Su Q, Jiang T, Zhang J. Large deviations for heavy-tailed random sums in compound renewal model. Stat. Probabil. Lett., 2001, 1(52):91-100
[14] Tang F, Bai J. Precise large deviations for aggregate loss process in a multi-risk model. J. Koren. Math. Soc., 2015, 52(3):447-467
[15] Wang D, Tang Q. Maxima of sums and random sums for negatively associated random variables with heavy tails. Stat. Probabil. Lett., 2004, 3(68):287-295
[16] Kaas R, Tang Q. A large deviation result for aggregate claims with dependent claim occurrences. Insur. Math. Econom., 2005, 3(36):251-259

[1]毕秀春, 张曙光, 李荣. 一类重灾风险模型的生存概率[J]. 应用数学学报(英文版), 2012, 35(5): 817-828.
[2]肖鸿民, 李泽慧. 一类新风险过程的精细大偏差[J]. 应用数学学报(英文版), 2010, 33(5): 900-909.
[3]肖鸿民, 李泽慧. 一类新风险过程的精细大偏差[J]. 应用数学学报(英文版), 2010, 33(1): 900-909.
[4]张志祥. 大偏差结果的一个简单证明[J]. 应用数学学报(英文版), 2001, 17(3): 326-331.
[5]张志祥. 大偏差结果的一个简单证明[J]. 应用数学学报(英文版), 2001, 17(3): 326-331.
[6]席福宝. 退化扩散过程小扰动的平均越出时间估计[J]. 应用数学学报(英文版), 1997, 20(2): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14590
相关话题/过程 应用数学 概率 数学 统计