1. 浙江工商大学统计与数学学院,杭州 310018; 2. 上海海事大学经济管理学院, 上海 201306; 3.中国人民大学统计与大数据研究院,北京 100872; 4. 江西师范大学数学与信息科学学院,南昌 330022
出版日期:
2018-11-25发布日期:
2019-01-17Composite Quantile Regression Estimators of Regression Function with Censoring Indicators Missing at Random
WANG Jiangfeng 1 ,FAN Guoliang 2,3 ,WEN Limin 41. School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018; 2. School of Economics and Management, Shanghai Maritime University, Shanghai 201306; 3. Institute of Statistics and Big Data, Renmin University of China, Beijing 100872; 4. School of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022
Online:
2018-11-25Published:
2019-01-17摘要
图/表
参考文献
相关文章
编辑推荐
-->Metrics
本文评论
在非参数回归模型中, 传统的Nadaraya-Watson核估计和局部多项式估计常常因为误差为重尾情况而变得不稳健, Kai等人(2010)提出的复合分位数回归方法能弥 补这一缺陷. 文章在删失指标随机缺失的情况下, 研究了误差具有异方差结构的非参数删失回归模型, 利用局部多项式方法构造了回归函数的复合分位数回归估计, 并得到了该估计的渐近正 态性结果, 把Kai等人(2010)的结果推广到删失指标随机缺失的右删失数据下. 最后通过模 拟发现, 尤其是当误差为重尾分布时, 该估计方法比Wang和Zheng (2014)提出的核估计方法更好.
分享此文: