[1] Crandall M G and Majda A. Monotone difference approximations for scalar conservation laws[J]. Math. Comput., 1980, 34:1-21. [2] Duan J M and Tang H Z. High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics[J]. J. Comput. Phys., 2021, 431:110136. [3] Duan J M and Tang H Z. Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics[J]. J. Comput. Phys., 2021, 426:109949. [4] Duan J M and Tang H Z. High-order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal special relativistic magnetohydrodynamics[J]. J. Comput. Phys., 2020, 421:109731. [5] Duan J M and Tang H Z. High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics[J]. Adv. Appl. Math. Mech., 2020, 12:1-29. [6] Fjordholm U S, Mishra S and Tadmor E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM J. Numer. Anal., 2012, 50:544-573. [7] Harten A, Hyman J M, Lax P D. On finite difference approximations and entropy conditions for shocks[J]. Comm. Pure Appl. Math., 1976, 29:297-322. [8] Kruzhkov N. First order quasi-linear equations in several independent variables[J]. Math. USSR Sb., 10(1970), 217-243. [9] LeFloch P G, Mercier J M and Rohde C. Fully discrete, entropy conservative schemes of arbitrary order[J]. SIAM J. Numer. Anal., 2002, 40:1968-1992. [10] Oleinik O A. Discontinuous solutions of nonlinear differential equations[J]. Uspekhi Mat. Nauk, 1957, 12:3-73; Amer. Math. Soc. Transl. Ser., 2(26):95-172. [11] Osher S. Riemann solvers, the entropy condition, and difference approximations[J]. SIAM J. Numer. Anal., 1984, 21:217-235. [12] Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws. I[J]. Math. Comput., 1987, 49:91-103. [13] Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems[J]. Acta Numerica, 2003, 12:451-512. [14] Yang Z G, Lin L L and Dong S C. A family of second-order energy-stable schemes for Cahn-Hilliard type equations[J]. J. Comput. Phys., 2019, 383:24-54. |