[1] Ahookhosh M, Artacho F J A, Fleming R M T and Vuong Phan T. Local convergence of LevenbergMarquardt methods under Hölderian metric subregularity, arXiv:1703.07461. [2] Fan J Y. Convergence rate of the trust region method for nonlinear equations under local error bound condition[J]. Computational Optimization and Applications, 2006, 34:215-227. [3] Fan J Y. The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence[J]. Mathematics of Computation, 2012, 81:447-466. [4] Fan J Y, Huang J C and Pan J Y. An adaptive multi-step Levenberg-Marquardt method[J]. Journal of Scientific Computing, 2019, 78:531-548. [5] Fan J Y and Yuan Y X. On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption[J]. Computing, 2005, 74:23-39. [6] 范金燕, 袁亚湘, 非线性方程组数值方法[M]. 科学出版社, 2018. [7] Kelley C T. Solving Nonlinear Equations with Newton's Method[J]. Fundamentals of Algorithms, SIAM, Philadelphia, 2003. [8] Levenberg K. A method for the solution of certain nonlinear problems in least squares[J]. Quart. Appl. Math., 1944, 2:164-166. [9] Marquardt D W. An algorithm for least-squares estimation of nonlinear inequalities[J]. SIAM J. Appl. Math., 1963, 11:431-441. [10] Moré J J. The Levenberg-Marquardt algorithm:implementation and theory. In:G. A. Watson, ed., Lecture Notes in Mathematics 630:Numerical Analysis, Springer-Verlag, Berlin, 1978, 105-116. [11] Powell M J D. Convergence properties of a class of minimization algorithms[J]. Nonlinear programming, 1975, 2:1-27. [12] Wang H Y and Fan J Y. Convergence rate of the Levenberg-Marquardt method under Hölderian local error bound[J]. Optimization Methods and Software, 2020, 35767-786. [13] Wang H Y and Fan J Y. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound[J]. Journal of Industrial and Management Optimization, 202117:2265-2275. [14] Yamashita N and Fukushima M. On the rate of convergence of the Levenberg-Marquardt method[J]. Computing, Supplement 2001, 15:237-249. [15] Yuan Y X. Trust region algorithms for nonlinear equations[J]. Information, 1998, 1:7-20. [16] Yuan Y X. Subspace methods for large scale nonlinear equations and nonlinear least squares[J]. Optimizaiton and Engineering, 2009, 10:207-218. [17] Yuan Y X. Recent advances in numerical methods for nonlinear equations and nonlinear least sqaures[J]. Numerical Algebra, Control and Optimization, 2011, 1:15-34. [18] Zhu X D and Lin G H. Improved convergence results for a modified Levenberg-Marquardt method for nonlinear equations and applications in MPCC[J]. Optimization Methods and Software, 2016, 31:791-804. |