[1] Reutskiy S Y. A novel method for solving second order fractional eigenvalue problems[J]. Journal of Computational and Applied Mathematics, 2016, 306:133-153. [2] Herrmann R. Fractional calculus:an introduction for physicists[J]. World Scientific, 2014, 152(6):846-850. [3] Lubich. Discretized fractional calculus[J]. SIAM Journal on Mathematical Analysis, 1986, 17(3):704-716. [4] Zhao X, Sun Z Z. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions[J]. Journal of Computational Physics, 2011, 230(15):6061-6074. [5] Ding H, Li C, Chen Y Q. High-order algorithms for Riesz derivative and their applications (II)[J]. Journal of Computational Physics, 2015, 293:218-237. [6] Zhu Y, Sun Z Z. A high-order difference scheme for the space and time fractional Bloch-Torrey equation[J]. Computational Methods in Applied Mathematics, 2017, 18(1):356-380. [7] Lei S L, Sun H W. A circulant preconditioner for fractional diffusion equations[J]. Journal of Computational Physics, 2013, 242:715-725. [8] Bai Z Z, Lu K Y, Pan J Y. Diagonal and Toeplitz splitting iteration methods for diagonal-plusToeplitz linear systems from spatial fractional diffusion equations[J]. Numerical Linear Algebra with Applications, 2017:2093. [9] Tian W, Zhou H, Deng W. A class of second order difference approximations for solving space fractional diffusion equations[J]. Mathematics of Computation, 2015, 84(294):1703-1727. [10] Sun Z Z, Wu X. A fully discrete difference scheme for a diffusion-wave system[J]. Applied Numerical Mathematics, 2006, 56(2):193-209. [11] Yang Q, Liu F, Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives[J]. Applied Mathematical Modelling, 2010, 34(1):200-218. [12] Celik C, Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative[J]. Journal of Computational Physics, 2012, 231(4):1743-1750. [13] Ching W K. Iterative Methods for Queuing and Manufacturing Systems[M]. Springer, 2001. [14] Levinson N. The wiener (root mean square) error criterion in filter design and prediction[J]. Journal of Mathematics and Physics, 1946, 25(2):261-278. [15] Bitmead R R, Anderson B D O. Asymptotically fast solution of Toeplitz and related systems of linear equations[J]. Linear Algebra and its Applications, 1980, 34:103-116. [16] Brent R P, Gustavson F G, Yun D. Fast solution of Toeplitz systems of equations and computation of Padé approximants[J]. Journal of Algorithms, 1980, 1(3):259-295. [17] Gustavson F G, Yun D. Fast algorithms for rational Hermite approximation and solution of Toeplitz systems[J]. IEEE Transactions on Circuits and Systems, 1979, 26(9):750-755. [18] Zohar, Shalhav. The solution of a Toeplitz set of linear equations[J]. Journal of the ACM, 1974, 21(2):272-276. [19] Ammar G S, Gragg B, Mn M. Superfast solution of real positive definite Toeplitz systems[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 9(1):61-76. [20] Bunch J R. Stability of methods for solving Toeplitz systems of equations[J]. SIAM Journal on Scientific and Statistical Computing, 1985, 6(2):349-364. [21] Ng M K. Circulant and skew-circulant splitting methods for Toeplitz systems[J]. Journal of Computational and Applied Mathematics, 2003, 159(1):101-108. [22] Akhondi N, Toutounian F. Accelerated circulant and skew circulant splitting methods for Hermitian positive definite Toeplitz systems[J]. Advances in Numerical Analysis, 2012, 2012:1-17. [23] Gu C, Tian Z. On the HSS iteration methods for positive definite Toeplitz linear systems[J]. Journal of Computational and Applied Mathematics, 2009, 224(2):709-718. [24] Ng M K. Iterative Methods for Toeplitz Systems[M]. Oxford Science Publications, 2004. [25] Serra S. A practical algorithm to design fast and optimal band-Toeplitz preconditioners for Hermitian Toeplitz systems[J]. Calcolo, 1996, 33(3-4):209-221. [26] Chen J, Li T L H, Anitescu M. A parallel linear solver for multilevel Toeplitz systems with possibly several right-hand sides[J]. Parallel Computing, 2014, 40(8):408-424. [27] 徐仲, 张凯院, 陆全. Toeplitz矩阵类的快速算法[M]. 西安:西北工业大学出版社, 1999. [28] Chan R H, Ng K P. Toeplitz preconditioners for Hermitian Toeplitz systems[J]. Linear Algebra and its Applications, 1993, 190(2):181-208. [29] Chan R H. Fast band-Toeplitz preconditioners for Hermitian Toeplitz systems[J]. SIAM Journal on Scientific Computing, 2001, 15(1):164-171. [30] Tyrtyshnikov E E. Optimal and Superoptimal Circulant Preconditioners[J]. SIAM Journal on Matrix Analysis and Applications, 1992, 13(2):459-473. [31] Olkin J A. Linear and Nonlinear Deconvolution Problems[M]. PhD thesis, Rice University, Houston, 1986. [32] Chan R H, Yeung C M C. Circulant preconditioners constructed from kernels[J]. SIAM Journal on Numerical Analysis, 1992, 29(4):1093-1103. [33] Strang G. A proposal for Toeplitz matrix calculations[J]. Studies in Applied Mathematics, 1986, 74(3):171-176. [34] Chan R H, Ng M K, Jin X Q. Strang-type preconditioners for systems of LMF-based ODE codes[J]. IMA Journal of Numerical Analysis, 2001, 21(2):451-462. [35] Jin X Q. Preconditioning Techniques for Toeplitz Systems[M].高等教育出版社,2010. [36] Geller D, Kra I, Popescu S, et al. On circulant matrices[J]. Notices of the American Mathematical Society, 2004, 59(3):368-377. [37] Saad Y, Schultz M H. GMRES:a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869. [38] Golub G H, Van Loan C F. Matrix Computations[M]. 4th Edition, The Johns Hopkins University Press, Baltimore, 2013. |