[1] Liu Y, Du Y, Li H, He S, Gao W. Finite difference/finite element method for a nonlinear timefractional fourth-order reaction-diffusion problem[J]. Comput. Math. Appl., 2015, 70:573-591. [2] Shi D, Yang H. Superconvergence analysis of a new low order nonconforming MFEM for timefractional diffusion equation[J]. Appl. Numer. Math., 2018, 131:109-122. [3] Deng W, Li C, Guo Q. Analysis of fractional differential equations with multi-orders[J]. Fractals, 2007, 15(2):173-182. [4] Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation[J]. J. Comput. Phys., 2007, 225:1533-1552. [5] Yue X, Shu S, Xu X, Bu W, Pan K. Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations[J]. Comput. Math. Appl., 2019, 78(11):3471-3484. [6] Zheng M, Liu F, Liu Q, Burrage K, Simpson M J. Numerical solution of the time fractional reaction-diffusion equation with a moving boundary[J]. J. Comput. Phys., 2017, 338:493-510. [7] Liu Y, Yu Z, Li H, Liu F, Wang J. Time two-mesh algorithm combined with finite element method for time fractional water wave model[J]. Int. J. Heat Mass Transfer, 2018, 120:1132-1145. [8] Liu Y, Du Y, Li H, Wang J. A two-grid finite element approximation for a nonlinear time-fractional Cable equation[J]. Nonlinear Dyn., 2016, 85:2535-2548. [9] Yin B, Liu Y, Li H, He S, Fast algorithm based on TT-M FE system for space fractional AllenCahn equations with smooth and non-smooth solution[J]. J. Comput. Phys., 2019, 379:351-372. [10] Bu W, Tang Y, Wu Y, Yang J. Finite difference/finite element method for two dimensional space and time fractional Bloch-Torrey equations[J]. J. Comput. Phys., 2015, 293:264-279. [11] Yang Z, Liu F, Nie Y, Turner I. An unstructured mesh finite difference/finite element method for the three-dimensional time-space fractional Bloch-Torrey equations on irregular domains[J]. J. Comput. Phys., 2020, 408:109284. [12] Ding H, Li C. Numerical algorithms for the fractional diffusion-wave equation with reaction term[J]. Abstr. Appl. Anal., 2013, 2013:1-15. [13] Luo Z, Wang H. A highly efficient reduced-order extrapolated finite difference algorithm for timespace tempered fractional diffusion-wave equation[J]. Appl. Math. Lett., 2020, 102:106090. [14] Sun Z, Wu X. A fully discrete difference scheme for a diffusion-wave system[J]. Appl. Numer. Math., 2006, 56:193-209. [15] Li L, Xu D, Luo M. Alternating direction implicit Galerkin finite element method for the twodimensional fractional diffusion-wave equation[J]. J. Comput. Phys., 2013, 255:471-485. [16] Jin B T, Lazarov R, Zhou Z. Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data[J]. SIAM J. Sci. Comput., 2016, 38(1):A146-A170. [17] Liu Y, Fang Z, Li H, He S. A mixed finite element method for a time-fractional fourth-order partial differential equation[J]. Appl. Math. Comput., 2014, 243:703-717. [18] Zeng F, Li C. A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation[J]. Appl. Numer. Math., 2017, 121:82-95. [19] Stojanovic M. Numerical method for solving diffusion-wave phenomena[J]. J. Comp. Appl. Math., 2011, 235:3121-3137. [20] Liu F, Meerschaert M M, Mcgough R J, Zhuang P, Liu Q. Numerical methods for solving the multi-term time-fractional wave-diffusion equations[J]. Fract. Calc. Appl. Anal., 2013, 16(1):9-25. [21] Caputo M. Distributed order differential equations modeling dielectric induction and diffusion[J]. Fract. Calc. Appl. Anal., 2001, 4:421-442. [22] Mainardi F, Pagnini G, Gorenflo R. Some aspects of fractional diffusion equations of single and distributed order[J]. Appl. Math. Comput., 2007, 187(1):295-305. [23] Chechkin A V, Gorenflo R, Sokolov I M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations[J]. Phys. Rev. E., 2002, 66(4):046129. [24] Gao X, Liu F, Li H, Liu Y, Turner I, Yin B. A novel finite element method for the distributed-order time fractional Cable equation in two dimensions[J]. Comput. Math. Appl., 2020, 80(5):923-939. [25] Yin B, Liu Y, Li H, Zhang Z. Approximation methods for the distributed order calculus using the convolution quadrature[J]. Discrete Contin. Dyn. Syst.-Ser. B., 2020, doi:10.3934/dcdsb.2020168. [26] Ford N J, Morgado M L. Distributed order equations as boundary value problems[J]. Comput. Math. Appl., 2012, 64(10):2973-2981. [27] Sun Z, Wu X. A fully discrete difference scheme for a diffusion-wave system[J]. Appl. Numer. Math., 2006, 56(3):193-209. [28] Liu F, Zhuang P, Liu Q. The applications and numerical methods of fractional differential equations[M]. Beijing:Science Press, 2015, 50-51. [29] Feng L, Liu F, Turner I. Novel numerical analysis of multi-term time fractional viscoelastic nonNewtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid[J]. Fract. Calc. Appl. Anal., 2018, 21:1073-1103. |