[1] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-657 [2] 张凯. 美式期权定价————基于罚方法的金融计算[M]. 北京:经济科学出版社, 2012. [3] Gao Y, Song H M,Wang X S and Zhang K. Primal-dual active set method for pricing American better-of option on two assets[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 80:104976. [4] Yang H. A numerical analysis of American options with regime switching[J]. Journal of Scientific Computing, 2010, 44(1):69-91. [5] Florescu I, Liu R, Mariani M C and Sewell G. Numerical schemes for option pricing in regimeswitching jump diffusion models[J]. International Journal of Theoretical and Applied Finance, 2013, 16(8):1-25. [6] Bastani A F, Ahmadi Z, Damircheli D. A radial basis collocation method for prcing American options under regime-switching jump-diffusion models[J]. Applied Numerical Mathematics, 2013, 65(2):79-90. [7] Lee Y. Financial options pricing with regime-switching jump-diffusions[J]. Computers and Mathematics with Applications, 2014, 68(3):392-404. [8] Rambeerich N, Pantelous A A. A high order finite element scheme for pricing options under regime switching jump diffusion processes[J]. Journal of Computational and Applied Mathematics, 2016, 300:83-96. [9] Heidari S, Azari H. A front-fixing finite element method for pricing American options under regime-switching jump-diffusion models[J]. Computers and Mathematics with Applications, 2018, 37(3):3691-3707. [10] Kazmi K Khaliq A Q M, Alrabeei S. Solving complex PIDE systems for pricing American option under multi-state regime switching jump-diffusion model[J]. Computers and Mathematics with Applications, 2018, 75(8):2989-3001. [11] Kazmi K. An IMEX predictor-corrector method for pricing options under regime-switching jumpdiffusion models[J]. International Journal of Computer Mathematics, 2019, 96(6):1137-1157. [12] Zhang K, Teo K L, Swartz M. A robust numerical scheme for pricing American options under regime switching based on penalty method[J]. Computational Economics, 2014, 43(4):463-483. [13] Zhang K, Yang X Q. Power penalty approach to American options pricing under regime switching[J]. Journal of Optimization Theory and Applications, 2018, 179(1):311-331. [14] Wang S. A novel fitted finite volume method for the Black-Scholes equation governing option pricing[J]. IMA Journal of Numerical Analysis, 2004, 24(4):699-720. [15] Zhang K, Wang S. Pricing options under jump diffusion processes with fitted finite volume method[J]. Applied Mathematics and Computation, 2008, 201(1):398-431. [16] Zhang K, Teo K L. A penalty-based method from reconstructing smooth local volatility surfacf from American options[J]. Journal of Industrial and Management Optimization, 2015, 11(2):631-644. [17] Chernogorova T, Valkov R. Analysis of a finite volume element method for a degenerate parabolic equation in the zero-coupon bond pricing[J]. Computers and Mathematics with Applications, 2015, 34(2):619-646. [18] Zhang K, Yang X Q. Pricing European options on zero-coupon bonds with a fitted finite volume method[J]. International Journal of Numerical Analysis and Modeling, 2017, 14(3):405-418. [19] Zhang S H, Wang X Y and Li H. Modeling and computation of water management by real options[J]. Journal of Industrial and Management Optimization, 2018, 14(1):81-103. [20] Salmi S, Toivanen J. An iterative method for pricing American options under jump-diffusion model[J]. Applied Numerical Mathematics, 2011, 61(7):821-831. [21] Gan X T, Yin J F, Guo Y X. Finite volume method for pricing European and American options under jump-diffusion models[J]. East Asian Journal on Applied Mathematics, 2017, 7(2):227-247. |