[1] Beck A and Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2:183-202.[2] Benjamin R, Fazel M and Parrilo P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52:471-501.[3] Bertsekas D P. Nonlinear Programming[M], Athena Scientific, 1999.[4] Best M J and Chakravarti N. Active set algorithms for isotonic regression; a unifying framework[J]. Mathematical Programming, 1990, 47:425-439.[5] Bogdan M, van den Berg E, Sabatti C, Su W and Candès E J. SLOPE-adaptive variable selection via convex optimization[J]. Annals of Applied Statistics, 2015, 9:1103-1140.[6] Bondell H D and Reich B J. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR[J]. Biometrics, 2008, 64:115-123.[7] Bauschke H H and Combettes P L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces[M]. Springer, New York, 2011.[8] Clarke F H. Optimization and Nonsmooth Analysis[M]. SIAM, 1990.[9] Condat L. A direct algorithm for 1-D total variation denoising[J]. IEEE Signal Processing Letters, 2013, 20:1054-1057.[10] Cui Y, Ding C and Zhao X Y. Quadratic growth conditions for convex matrix optimization problems associated with spectral functions[J]. SIAM Journal on Optimization, 2017, 27:2332-2355.[11] Cui Y, Sun D F and Toh K C. On the R-superlinear convergence of the KKT residuals generated by the augmented Lagrangian method for convex composite conic programming[J]. Mathematical Programming, 2019, 178:381-415.[12] Ding C. An Introduction to a Class of Matrix Optimization Problems[D]. Ph.D Thesis, Department of Mathematics, National University of Singapore, 2012.[13] Ding C, Sun D F and Toh K C. An introduction to a class of matrix cone programming[J]. Mathematical Programming, 2014, 144:141-179.[14] Dontchev A L and Rockafellar R T. Implicit Functions and Solution Mappings[M]. Springer, New York, 2009.[15] Fischer A. Local behavior of an iterative framework for generalized equations with nonisolated solutions[J]. Mathematical Programming, 2002, 94:91-124.[16] Facchinei F, Fischer A and Herrich M. An LP-Newton method:nonsmooth equations, KKT systems, and nonisolated solutions[J]. Mathematical Programming, 2014, 146:1-36.[17] Facchinei F and Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. Springer, New York, 2003.[18] Friedman J, Hastie T, Hofling H and Tibshirani R. Pathwise coordinate optimization[J]. The annals of applied statistics, 2007, 1:302-332.[19] Gabay D and Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers & Mathematics with Applications, 1976, 2:17-40.[20] Glowinski R and Marroco A. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires[J]. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, 1975, 9:41-76.[21] Golub G and Van Loan C F. Matrix Computations[M]. 3nd ed., Johns Hopkins University Press, Baltimore, MD, 1996.[22] Goebel R and Rockafellar R T. Local strong convexity and local Lipschitz continuity of the gradient of convex functions[J]. Journal of Convex Analysis, 2008, 15:263-270.[23] Hiriart-Urruty J B, Strodiot J J and Nguyen V H. Generalized Hessian matrix and second-order optimality conditions for problems with C1,1 data[J]. Applied Mathematics and Optimization, 1984, 11:43-56.[24] Kummer B, Newton's method for non-differentiable functions[J]. Advances in Mathematical Optimization, 1988, 45:114-125.[25] Lee J D, Sun Y and Saunders M A. Proximal Newton-type methods for minimizing composite functions[J]. SIAM Journal on Optimization, 2014, 24:1420-1443.[26] Leventhal D. Metric subregularity and the proximal point method[J]. Journal of Mathematical Analysis and Applications, 2009, 360:681-688.[27] Li X D, Sun D F and Toh K C. A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions[J]. Mathematical Programming, 2016, 155:333-373.[28] Li X D, Sun D F and Toh K C. QSDPNAL:A two-phase augmented Lagrangian method for convex quadratic semidefinite programming[J]. Mathematical Programming Computation, 2018, 10:703-743.[29] Li X D, Sun D F and Toh K C. A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems[J]. SIAM Journal on Optimization, 2018, 28:433-458.[30] Li X D, Sun D F and Toh K C. On efficiently solving the subproblems of a level-set method for fused Lasso problems[J]. SIAM Journal on Optimization, 2018, 28:1842-1866.[31] Li X D, Sun D F and Toh K C. On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope[J]. Mathematical Programming, 2020, 178:419-446.[32] Li X D, Sun D F and Toh K C, An asymptotically superlinearly convergent semismooth Newton augmented Lagrangian method for Linear Programming[J]. SIAM Journal on Optimization, 2020, 30:2410-2440.[33] Li G Y and Mordukhovich B S. Hölder metric subregularity with applications to proximal point method[J]. SIAM Journal on Optimization, 2012, 22:1655-1684.[34] Lin M, Liu Y J, Sun D and Toh K C. Efficient sparse hessian based algorithms for the clustered lasso problem[J]. SIAM Journal on Optimization, 2019, 29:2026-2052.[35] Lin M, Sun D F, Toh K C and Yuan Y. A dual Newton based preconditioned proximal point algorithm for exclusive lasso models, arXiv:1902.00151, 2019.[36] Luo Z Q and Tseng P. On the linear convergence of descent methods for convex essentially smooth minimization[J]. SIAM J. Control and Optimization, 1992, 30:408-425.[37] Luo Z Q and Tseng P. Error bounds and convergence analysis of feasible descent methods:a general approach[J]. Annals of Operations Research, 1993, 46:157-178.[38] Luo Z, Sun D F, Toh K C and Xiu N. Solving the OSCAR and SLOPE models using a semismooth Newton-based augmented Lagrangian method[J]. Journal of Machine Learning Research, 2019, 20:1-25.[39] Luque F J. Asymptotic convergence analysis of the proximal point algorithm[J]. SIAM Journal on Control and Optimization, 1984, 22:277-293.[40] Mifflin R. Semismooth and semiconvex functions in constrained optimization[J]. SIAM Journal on Control and Optimization, 1977, 15:959-972.[41] Mordukhovich B S and Ouyang W. Higher-order metric subregularity and its applications[J]. Journal of Global Optimization, 2015, 63:777-795.[42] Nesterov Y. A method of solving a convex programming problem with convergence rate O(1/k2)[J]. Soviet Mathematics Doklady, 1983, 27:372-376.[43] Qi H and Sun D F. A quadratically convergent Newton method for computing the nearest correlation matrix[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 28:360-385.[44] Qi L and Sun J. A nonsmooth version of Newton's method[J]. Mathematical Programming, 1993, 58:353-367.[45] Robinson S M. An implicit-function theorem for generalized variational inequalties. Technical Summary Report No. 1672, Mathematics Research Center, University of Wisconsin-Madison, 1976; available from National Technical Information Service under Accession No. ADA031952.[46] Robinson S M. Some continuity properties of polyhedral multifunctions, In Mathematical Programming at Oberwolfach, vol. 14 of Mathematical Programming Studies, Springer, Berlin, Heidelberg, 1981, 206-214.[47] Rockafellar R T. Convex Analysis[M]. Princeton University Press, 1970.[48] Rockafellar R T. Monotone operators and the proximal point algorithm[J]. SIAM Journal on Control and Optimization, 1976, 14:877-898.[49] Rockafellar R T. Augmented Lagrangians and applications of the proximal point algorithm in convex programming[J]. Mathematics of Operations Research, 1976, 1:97-116.[50] Rockafellar R T and Wets R J B. Variational Analysis[M]. Springer, New York, 1998.[51] She Y. Sparse regression with exact clustering[J]. Electronic Journal of Statistics, 2010, 4:1055-1096.[52] Sun D F and Sun J. Semismooth matrix-valued functions[J]. Mathematics of Operations Research, 2002, 27:150-169.[53] Sun J. On Monotropic Piecewise Qudratic Programming[D]. Ph.D Thesis, Department of Mathematics, University of Washington, Seattle, 1986.[54] Tang P, Wang C, Sun D F and Toh K C. A sparse semismooth Newton based proximal majorization-minimization algorithm for nonconvex square-root-loss regression problems. Journal of Machine Learning Research, in print, 2020.[55] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society:Series B, 1996, 58:267-288.[56] Tibshirani R, Saunders M, Rosset S, Zhu J and Knight K. Sparsity and smoothness via the fused lasso[M]. Journal of the Royal Statistical Society:Series B, 2005, 67:91-108.[57] Tseng P and Yun S. A coordinate gradient descent method for nonsmooth separable minimization[J]. Mathematical Programming, 2010, 125:387-423.[58] Tseng P. Approximation accuracy, gradient methods, and error bound for structured convex optimization[J]. Mathematical Programming, 2010, 125:263-295.[59] Xiao X, Li Y, Wen Z and Zhang L. A regularized semi-smooth Newton method with projection steps for composite convex programs[J]. Journal of Scientific Computing, 2018, 76:364-389.[60] Yang L Q, Sun D F and Toh K C. SDPNAL+:A majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints[J]. Mathematical Programming Computation, 2015, 7:331-366.[61] Yu Y. On decomposing the proximal map, in Advances in Neural Information Processing Systems, 2013, 91-99.[62] Yuan M and Lin Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society:Series B, 2006, 68:49-67.[63] Yue M X, Zhou Z and So A M C. A family of inexact SQA methods for non-smooth convex minimization with provable convergence guarantees based on the Luo-Tseng error bound property[J]. Mathematical Programming, 2019, 174:327-358.[64] Zhao X Y, Sun D F and Toh K C. A Newton-CG augmented Lagrangian method for semidefinite programming[J]. SIAM Journal on Optimization, 2010, 20:1737-1765.[65] Zhang Y J, Zhang N, Sun D F and Toh K C. An efficient Hessian based algorithm for solving large-scale sparse group Lasso problems[J]. Mathematical Programming, 2020, 179, 223-263.[66] Zhou Z R and So A M C. A unified approach to error bounds for structured convex optimization problems[J]. Mathematical Programming, 2017, 165:689-728.[67] Zou H and Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society:Series B, 2005, 67:301-320. |