删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种连续的谱聚类优化模型

本站小编 Free考研考试/2021-12-27

刘歆1,2, 吴国宝3, 张瑞1,2, 张在坤4
1. 中国科学院数学与系统科学研究院, 科学与工程计算国家重点实验室, 北京 100190;
2. 中国科学院大学, 北京 100190;
3. 香港浸会大学数学系;
4. 香港理工大学应用数学系
收稿日期:2018-03-06出版日期:2018-12-15发布日期:2018-11-20


基金资助:国家自然科学基金项目(11622112,11471325,91530204和11688101);国家数学与交叉科学中心;香港研究资助局(RGC)基金项目(PolyU 253012/17P,N_PolyU504/14,HKBU RC-ICRS/16-17/03);香港理工大学科研启动基金项目1-ZVHT资助.


A NEW CONTINUOUS OPTIMIZATION MODEL FOR SPECTRAL CLUSTERING

Liu Xin1,2, Michael Ng3, Zhang Rui1,2, Zhang Zaikun4
1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100190, China;
3. Hong Kong Baptist University, China;
4. Hong Kong Polytechnic University, China
Received:2018-03-06Online:2018-12-15Published:2018-11-20







摘要



编辑推荐
-->


聚类与图的划分问题在大数据分析中有着重要的应用.这类问题一般被描述为组合优化问题,因此较难快速求解.本文设计了一种新的连续优化模型,并提出了一种块坐标下降算法,数值实验显示我们的新方法在求解聚类与图的划分问题上很有潜力.我们还更进一步分析了我们的连续优化模型和组合优化模型的关系.
MR(2010)主题分类:
91C20
65K05
94C15
65L15
90C11

分享此文:


()

[1] Chung F. Spectral Graph Theory. Number 92 in Regional Conferences in Mathematics. American Mathematical Society, Providence, 1997.

[2] Donath W E and Hoffman A J. Algorithms for partitioning graphs and computer logic based on eigenvectors of connection matrices[J]. IBM Technical Disclosure Bulletin, 1972, 15(3):938-944.

[3] Donath W E and A. J. Hoffman A J. Lower bounds for the partitioning of graphs[J]. IBM Journal of Research and Development, 1973, 17(5):420-425.

[4] Hagen L and Kahng A B. New spectral methods for ratio cut partition and clustering[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1992, 11(9):1074- 1085.

[5] Lütkepohl H. Handbook of matrices. John Wiley & Sons, New York, 1996.

[6] Mohar B. The Laplacian spectrum of graphs. In Y. Alavi, G. Chartrand, O. R. Oellermann, and J. Schwenk, A, editors, Graph Theory, Combinatorics, and Applications:Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, volume 2, pages 871-898. Wiley, New York, 1991.

[7] Mohar B. Some applications of Laplace eigenvalues of graphs. In G. Hahn and G. Sabidussi, editors, Graph Symmetry:Algebraic Methods and Applications, volume 497 of Nato Science Series C, pages 225-275. Springer Netherlands, Dordrecht, 1997.

[8] Ng A Y, Jordan M I, and Weiss Y. On spectral clustering:Analysis and an algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 849-856. MIT Press, 2002.

[9] Shi J and Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.

[10] von Luxburg U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4):395-416.

[11] von Luxburg U, Bousquet O, and Belkin M. On the convergence of spectral clustering on random samples:the normalized case. In International Conference on Computational Learning Theory, pages 457-471. Springer, 2004.

[1]张璐, 孔令臣, 陈黄岳. 基于距离相关系数的分层聚类法[J]. 计算数学, 2019, 41(3): 320-334.
[2]夏雨晴, 张振跃. 子空间聚类的重建模型及其快速算法[J]. 计算数学, 2019, 41(1): 1-11.
[3]石子烨, 梁恒, 白峰杉. 数据分割的分子动力学算法[J]. 计算数学, 2014, 36(3): 325-334.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=297
相关话题/数学 计算 优化 北京 数学系