[1] Chung F. Spectral Graph Theory. Number 92 in Regional Conferences in Mathematics. American Mathematical Society, Providence, 1997.[2] Donath W E and Hoffman A J. Algorithms for partitioning graphs and computer logic based on eigenvectors of connection matrices[J]. IBM Technical Disclosure Bulletin, 1972, 15(3):938-944.[3] Donath W E and A. J. Hoffman A J. Lower bounds for the partitioning of graphs[J]. IBM Journal of Research and Development, 1973, 17(5):420-425.[4] Hagen L and Kahng A B. New spectral methods for ratio cut partition and clustering[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1992, 11(9):1074- 1085.[5] Lütkepohl H. Handbook of matrices. John Wiley & Sons, New York, 1996.[6] Mohar B. The Laplacian spectrum of graphs. In Y. Alavi, G. Chartrand, O. R. Oellermann, and J. Schwenk, A, editors, Graph Theory, Combinatorics, and Applications:Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, volume 2, pages 871-898. Wiley, New York, 1991.[7] Mohar B. Some applications of Laplace eigenvalues of graphs. In G. Hahn and G. Sabidussi, editors, Graph Symmetry:Algebraic Methods and Applications, volume 497 of Nato Science Series C, pages 225-275. Springer Netherlands, Dordrecht, 1997.[8] Ng A Y, Jordan M I, and Weiss Y. On spectral clustering:Analysis and an algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 849-856. MIT Press, 2002.[9] Shi J and Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.[10] von Luxburg U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4):395-416.[11] von Luxburg U, Bousquet O, and Belkin M. On the convergence of spectral clustering on random samples:the normalized case. In International Conference on Computational Learning Theory, pages 457-471. Springer, 2004. |