删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

可压缩流体力学高精度拉格朗日格式及其保正性质

本站小编 Free考研考试/2021-12-27

成娟1,2, 舒其望3
1 国防计算物理实验室, 北京应用物理与计算数学研究所, 北京 100088;
2 京大学应用物理与技术中心, 北京 100871;
3 美国布朗大学应用数学系, 罗德岛州 RI 02912, 美国
收稿日期:2020-03-17出版日期:2020-08-15发布日期:2020-08-15


基金资助:国家自然科学基金(11871111,U1630247)、国防基础科研核基础科学挑战计划(TZ2016002)和中国工程物理研究院创新发展基金资助项目(CX20200026)资助.


HIGH ORDER LAGRANGIAN SCHEMES AND THEIR POSITIVITY-PRESERVING PROPERTY FOR COMPRESSIBLE FLUID FLOW

Cheng Juan1,2, Shu Chi-Wang3
1 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Center for Applied Physics and Technology, Peking University, Beijing 100871, China;
3 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
Received:2020-03-17Online:2020-08-15Published:2020-08-15







摘要



编辑推荐
-->


本文对可压缩流体力学高精度拉格朗日格式及其保正性质近年来的发展给出回顾与综述.文中分别介绍了一维、二维可压缩流体力学方程中心型拉格朗日格式的设计步骤,回顾了高精度拉格朗日格式以及高精度保正拉格朗日格式的研究进展.
MR(2010)主题分类:
65M08
65M12
65M60
76M12
76M10

分享此文:


()

[1] Abgrall R, Loubere R, Ovadia J. A Lagrangian discontinuous Galerkin-type method on unstructured meshes to solve hydrodynamics problems[J]. International Journal for Numerical Methods in Fluids, 2004, 44:645-663.

[2] Balsara D. Multidimensional HLLE Riemann solver:application to Euler and magnetohydrodynamic flows[J]. Journal of Computational Physics, 2010, 229:1970-1993.

[3] Barlow A, Maire P H, Rider W, Rieben R, Shashkov M. Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multi-material flows[J]. Journal of Computational Physics, 2016, 322:603-665.

[4] Batten P, Clarke N, Lambert C, Causon D. On the choice of wavespeeds for the HLLC Riemann solver[J]. SIAM Journal on Scientific Computing, 1997, 18:1553-1570.

[5] Benson D. Computational methods in Lagrangian and Eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99:235-394.

[6] Bezard F, Despres B. An entropic solver for ideal Lagrangian magnetohydrodynamics[J]. Journal of Computational Physics, 1999, 154:65-89.

[7] Boscheri W, Dumbser M. Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes[J]. Communications in Computational Physics, 2013, 14:1174-1206.

[8] Boscheri W, Balsara D, Dumbser M. Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers[J]. Journal of Computational Physics, 2014, 267:112-138.

[9] Boscheri W, Dumbser M, Balsara D. High order Lagrangian ADER-WENO schemes on unstructured meshes-Application of several node solvers to hydrodynamics and magnetohydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2014, 76:737-778.

[10] Boscheri W, Dumbser M. A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and nonconservative hyperbolic systems in 3D[J]. Journal of Computational Physics, 2014, 275:484-523.

[11] Boscheri W, Dumbser M, Zanotti O. High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes[J]. Journal of Computational Physics, 2015, 291:120-150.

[12] Burton D. Multidimensional discretization of conservation laws for unstructured polyhedral grids, Technical Report UCRL-JC-118306, Lawrence Liver-more National Laboratory, 1994.

[13] Caramana E, Burton D, Shashkov M, Whalen P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, Journal of Computational Physics[J]. 1998, 146:227-262.

[14] Caramana E, Shashkov M, Whalen P. Formulations of artificial viscosity for multidimensional shock wave computations[J]. Journal of Computational Physics, 1998, 144:70-97.

[15] Carre G, Del Pino S, Despres B, Labourasse E. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[J]. Journal of Computational Physics, 2009, 228:5160-5183.

[16] Cheng J, Shu C W. A high order ENO conservative Lagrangian type scheme for the compressible Euler equations[J]. Journal of Computational Physics, 2007, 227:1567-1596.

[17] Cheng J, Shu C W. A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equation[J]. Communications in Computational Physics, 2008, 4:1008-1024.

[18] Cheng J, Shu C W. A high order accurate conservative remapping method on staggered meshes[J]. Applied Numerical Mathematics, 2008, 58:1042-1060.

[19] Cheng J, Shu C W. A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry[J]. Journal of Computational Physics, 2010, 229:7191-7206.

[20] Cheng J, Shu C W. Improvement on spherical symmetry in two-dimensional cylindrical coordinates for a class of control volume Lagrangian schemes[J]. Communications in Computational Physics, 2012, 11:1144-1168.

[21] Cheng J, Shu C W, Zeng Q. A conservative Lagrangian scheme for solving compressible fluid flows with multiple internal energy equations[J]. Communications in Computational Physics, 2012, 12:1307-1328.

[22] Cheng J, Shu C W. Positivity-preserving Lagrangian scheme for multi-material compressible flow[J]. Journal of Computational Physics, 2014, 257:143-168.

[23] Cheng J, Shu C W. Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates[J]. Journal of Computational Physics, 2014, 272:245-265.

[24] Cockburn B, Karniadakis G, Shu C W. The development of discontinuous Galerkin methods, Part I:Overview, in:B. Cockburn, G. Karniadakis, C.-W. Shu (Eds.), Discontinuous Galerkin Methods:Theory, Computation and Applications, in:Lecture Notes in Computational Science and Engineering, 2000, 11:Springer, 3-50.

[25] Despres B, Mazeran C. Symmetrization of lagrangian gas dynamic in dimension two and multimdimensional solvers[J]. C. R. Mecanique, 2003, 331:475-480.

[26] Despres B, Mazeran C. Lagrangian gas dynamics in two dimensions and Lagrangian systems[J]. Archive for Rational Mechanics and Analysis, 2005, 178:327-372.

[27] Dobrev V, Ellis T, Kolev T, Rieben R. Curvilinear finite elements for Lagrangian hydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2011, 65:1295-1310.

[28] Dobrev V, Ellis T, Kolev T, Rieben R. High order curvilinear finite elements for Lagrangian hydrodynamics[J]. SIAM Journal on Scientific Computing, 2012, 34:606-641.

[29] Dobrev V, Ellis T, Kolev T, Rieben R. High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics[J]. Computers & Fluids, 2013, 83:58-69.

[30] Dukowicz J. A general, non-iterative Riemann solver for Godunov method[J]. Journal of Computational Physics, 1985, 61:119-137.

[31] Dukowicz J, Baumgardener J. Incremental remapping as a transport/advection algorithm[J]. Journal of Computational Physics, 2000, 160:318-335.

[32] Dumbser M, Uuriintsetseg A, Zanotti O. On arbitrary-Lagrangian-Eulerian one-step WENO schemes for stiff hyperbolic balance laws[J]. Communications in Computational Physics, 2013, 14:301-327.

[33] Dumbser M, Boscheri W. High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems:Applications to compressible multi-phase flows[J]. Computers & Fluids, 2013, 86:405-432.

[34] Gaburro E, Boscheri W, Chiocchetti S, Klingenberg C, Springel V, Dumbser M. High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes[J]. Journal of Computational Physics, 2020, 407:109-167,

[35] Einfeldt B, Munz C, Roe P, Sjogreen B. On Godunov-type methods near low densities[J]. Journal of Computational Physics, 1991, 92:273-295.

[36] Gallice G. Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[J]. Numerische Mathematik, 2003, 94:673-713.

[37] Harten A, Engquist B, Osher S, Chakravarthy S. Uniformly high order accurate essentially nonoscillatory schemes, III[J]. Journal of Computational Physics, 1987, 71:231-303.

[38] Hirt C, Amsden A, Cook J. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14:227-253.

[39] Jia Z, Zhang S. A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions[J]. Journal of Computational Physics, 2011, 230:2496-2522.

[40] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126:202-228.

[41] Ling D, Cheng J, Shu C W. Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates[J]. Computers & Fluids, 2017, 157:112-130.

[42] Liou M. A sequel to AUSM:AUSM+[J]. Journal of Computational Physics, 1996, 129:364-382.

[43] Liu W, Cheng J, Shu C W. High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations[J]. Journal of Computational Physics, 2009, 228:8872-8891.

[44] Liu X, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115:200-212.

[45] Liu X, Morgan N, Burton D. A Lagrangian discontinuous Galerkin hydrodynamic method[J]. Computers & Fluids, 2018, 163:68-85.

[46] Liu X, Morgan N, Burton D. A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme[J]. Journal of Computational Physics, 2019, 386:110-157.

[47] Loubere R, Shashkov M. A subcell remapping method on staggered polygonal grids for arbitraryLagrangian-Eulerian methods[J]. Journal of Computational Physics, 2005, 209:105-138.

[48] Maire P H, Abgrall R, Breil J, Ovadia J. A cell-centered Lagrangian scheme for compressible flow problems[J]. SIAM Journal of Scientific Computing, 2007, 29:1781-1824.

[49] Maire P H, Nkonga B. Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics[J]. Journal of Computational Physics, 2009, 228:799-821.

[50] Maire P H. A high-order cell-centered lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes[J]. Journal of Computational Physics, 2009, 228:2391-2425.

[51] Maire P H. A high-order cell-centered Lagrangian scheme for compressible fluid flows in twodimensional cylindrical geometry[J]. Journal of Computational Physics, 2009, 228:6882-6915.

[52] Maire P H, Loubere R, Vachal P. Staggered Lagrangian discretization based on cell-centered Riemann solver and associated hydrodynamics scheme[J]. Communications in Computational Physics, 2011, 10:940-978.

[53] Margolin L and Shashkov M. Second-order sign-preserving conservative interpolation (remapping) on general grids[J]. Journal of Computational Physics, 2003, 184:266-298.

[54] Morgan N, Lipnikov K, Burton D, Kenamond M. A Lagrangian staggered grid Godunov-like approach for hydrodynamics[J]. Journal of Computational Physics, 2014, 259:568-597.

[55] Morgan N, Liu X, Burton D. Reducing spurious mesh motion in Lagrangian finite volume and discontinuous Galerkin hydrodynamic methods[J]. Journal of Computational Physics, 2018, 372:35-61.

[56] Munz C. On Godunov-type schemes for Lagrangian gas dynamics[J]. SIAM Journal on Numerical Analysis, 1994, 31:17-42.

[57] von Neumann J, Richtmyer R. A method for the calculation of hydrodynamics shocks[J]. Journal of Applied Physics, 1950, 21:232-237.

[58] Ortega A, Scovazzi G. A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements[J]. Journal of Computational Physics, 2011, 230:6709-6741.

[59] Perthame B, Shu C W. On positivity preserving finite volume schemes for Euler equations[J]. Numerische Mathematik, 1996, 73:119-130.

[60] Scovazzi G, Christon M, Hughes T, Shadid J. Stabilized shock hydrodynamics:I. A Lagrangian method[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196:923-966.

[61] Scovazzi G. Stabilized shock hydrodynamics:II. Design and physical interpretation of the SUPG operator for Lagrangian computations[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196:966-978.

[62] Scovazzi G. Lagrangian shock hydrodynamics on tetrahedral meshes:A stable and accurate variational multiscale approach[J]. Journal of Computational Physics, 2012, 231:8029-8069.

[63] Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77:439-471.

[64] Toro E. Riemann solvers and numerical methods for fluid dynamics[M]. Springer-Verlag, Berlin, 1999.

[65] Wilkins M. Calculation of elastic plastic flow[J]. Methods of Computational Physics, 1964, 3:211-263.

[66] Vilar F, Maire P H, Abgrall R. Cell-centered discontinuous Galerkin discretizations for twodimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics[J]. Computers & Fluids, 2011, 46:498-504.

[67] Vilar F. Cell-centered discontinuous Galerkin discretization for two dimensional Lagrangian hydrodynamics[J]. Computers & Fluids, 2012, 64:64-73.

[68] Vilar F, Maire P H, Abgrall R. A discontinuous Galerkin discretization for solving the twodimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids[J]. Journal of Computational Physics, 2014, 276:188-234.

[69] Vilar F, Shu C W, Maire P H. Positivity-preserving cell-centered Lagrangian schemes for multimaterial compressible flows:From first-order to high-orders. Part I:The one-dimensional case[J]. Journal of Computational Physics, 2016, 312:385-415.

[70] Vilar F, Shu C W, Maire P H. Positivity-preserving cell-centered Lagrangian schemes for multimaterial compressible flows:From first-order to high-orders. Part II:The two-dimensional case[J]. Journal of Computational Physics, 2016, 312:416-442.

[71] Wang C W, Liu T G, and B C. KhooA Real Ghost Fluid Method for the Simulation of Multimedium Compressible Flow[J]. SIAM Journal on Scientific Computing, 2006, 28:278-302.

[72] Zhu J, Shu C W. A new type of multi-resolution WENO schemes with increasingly higher order of accuracy[J]. Journal of Computational Physics, 2018, 375:659-683.

[73] Zhu J, Shu C W. A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes[J]. Journal of Computational Physics, 2019, 392:19-33.

[74] Zhang R, Zhang M, Shu C W. On the order of accuracy and numerical performance of two classes of finite volume WENO schemes[J]. Communications in Computational Physics, 2011, 9:807-827.

[75] Zhang X, Shu C W. On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes[J]. Journal of Computational Physics, 2010, 229:8918-8934.

[76] Zhang X, Shu C W. Positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms[J]. Journal of Computational Physics, 2011, 230:1238-1248.

[77] Zhang X, Shu C W. Maximum-principle-satisfying and positivity preserving high order schemes for conservation laws:Survey and new developments[J]. Proceedings of the Royal Society A, 2011, 467:2752-2776.

[78] Zhang X, Shu C W. Positivity preserving high order finite difference WENO schemes for compressible Euler equations[J]. Journal of Computational Physics, 2012, 231:2245-2258.

[1]洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[2]张燕美, 兰斌, 盛志强, 袁光伟. 非定常对流扩散方程保正格式解的存在性[J]. 计算数学, 2019, 41(4): 381-394.
[3]贾东旭, 盛志强, 袁光伟. 扩散方程一种无条件稳定的保正并行有限差分方法[J]. 计算数学, 2019, 41(3): 242-258.
[4]盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294.
[5]王帅, 杭旭登, 袁光伟. 三维多面体网格上扩散方程的保正格式[J]. 计算数学, 2015, 37(3): 247-263.
[6]郑宁, 殷俊锋. 基于不光滑边界的变系数抛物型方程的高精度紧格式[J]. 计算数学, 2013, 35(3): 275-285.
[7]武从海, 赵宁. 基于新光滑因子的WENO5格式[J]. 计算数学, 2011, 33(3): 257-268.
[8]王东红, 赵宁, 王永健. 一维多介质可压缩流动的守恒型界面追踪方法[J]. 计算数学, 2009, 31(2): 118-126.
[9]陈静,罗振东,孙萍,. 定常的磁流体力学方程的非线性Galerkin—Petrov最小二乘混合元法[J]. 计算数学, 2007, 29(4): 421-432.
[10]喻海元,黄云清,. 变系数情形下Criss-Cross三角形线性元的渐近展式与超收敛[J]. 计算数学, 2007, 29(3): 325-336.
[11]郑华盛,赵宁,成娟. 一维高精度离散GDQ方法[J]. 计算数学, 2004, 26(3): 293-302.
[12]段火元,梁国平. 一类基于变量分离的稳定化混合有限元方法[J]. 计算数学, 2003, 25(3): 265-280.
[13]曾文平. 高阶抛物型方程的一族高精度恒稳差分格式[J]. 计算数学, 2003, 25(3): 347-354.
[14]张强. 不可压N-S方程的差分流线扩散法[J]. 计算数学, 2003, 25(3): 311-320.
[15]黄兰洁. 关于非定常不可压Navier-Stokes方程的时间高精度隐式差分方法[J]. 计算数学, 2002, 24(2): 197-218.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=281
相关话题/计算 数学 流体力学 物理 北京