[1] Aldroubi A. Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces[J]. Appl. Comput. Harmon. Anal., 2002, 13:151-161.[2] Aldroubi A, Sun Q and Tang W S. Convolution, average sampling, and a calderon resolution of the identity for shift-invariant spaces[J]. J. Fourier Anal. Appl., 2005, 11:215-244.[3] Balakrishnan A V. A note on the sampling principle for continous signals[J]. IEEE Trans. Inform. Theory, 1957, 3:143-146.[4] Beutler F. On the truncation error of the cardinal sampling expansion[J]. IEEE Trans. Inform. Theory, 1976, 22:568-573.[5] Brown J L, Jr. Truncation error for band-limited processes[J]. Inform. Sciences, 1969, 1:261-271.[6] Chen W and Zhang H. Exponential approximation of bandlimited random processes from oversampling(in Chinese)[J]. Sci. Sin. Math., 2015, 45:167-182.[7] Chen W and Zhang H. Exponential approximation of multivariate bandlimited functions from average oversampling, preprint, arXiv:1412.4265.[8] Faÿ G and Kang S. Average sampling of band-limited stochastic processes[J]. Appl. Comput. Harmon. Anal., 2013, 35(3):527-534.[9] Gröchenig K. Reconstruction algorithms in irregular sampling[J]. Math. Comput., 1992, 45:181-194.[10] He G and Song Z. Approximation of WKS sampling theorem on random signals[J]. Numer. Funct. Anal. Optim., 2011, 32(4):397-408.[11] He G, Song Z, Yang D and Zhu J. Truncation error estimate on random signals by local average[J]. Lect. Notes Comput. Sci., 2007, 4488:1075-1082[12] Houdre C. Reconstrction of bandlimited processes from irregular samples[J]. Ann. Probab., 1995, 23:674-695.[13] Pinsky M A. Introduction to Fourier Analysis and Wavelets, China Machine Press, Beijing, 2003.[14] Seip K. A note on sampling of bandlimited stochastic processes[J]. IEEE Trans. Inform. Theory, 1990, 36:1186.[15] Shannon C E. Communication in the presence of noise[J]. Proc. IEEE, 1949, 37:10-21.[16] Song Z. Approximation of multidimensional stochastic processes from average sampling[J]. J. Inequal. Appl., 2012, 2012:246.[17] Song Z, Liu B, Pang Y, Hou C and Li X. An improved Nyquist-Shannon irregular sampling theorem from local averages[J]. IEEE Trans. Inform. Theory, 2012, 58(9):6093-6100.[18] Song Z, Yang S and Zhou X. Approximation of signals from local averages[J]. Appl. Math. Lett., 2006, 19(12):1414-1420.[19] Song Z, Ye P, Wang P and Zeng S. Uniform truncation error for Shannon sampling expansion from local averages[J]. Acta Math. Appl. Sin. Engl. Ser., 2015, 31(1):121-130.[20] Song Z, Sun W, Zhou X and Hou Z. An average sampling theorem for bandlimited stochastic processes[J]. IEEE Trans. Inform. Theory, 2007, 53:4798-4800.[21] Song Z, Sun W, Yang S and Zhu G. Approximation of weak sense stationary stochastic processes from local averages[J]. Sci. in China Series A:Math., 2007, 50(4):457-463.[22] Splettstösser W. Sampling series approximation of continuous weak sense stationary processes[J]. Inform. and Control, 1981, 50:228-241.[23] Sun W and Zhou X. Reconstruction of band-limited signals from local averages[J]. IEEE Trans. Inform. Theory, 2002, 48:2955-2963.[24] Sun W and Zhou X. Reconstruction of bandlimited functions from local averages[J]. Constr. Approx., 2002, 18:205-222.[25] Wang Y and Zhang H. Reconstruction of bandlimited stochastic processes from average sampling with linear convergence, submitted.[26] Whittaker E T. On the functions which are represented by the expansion of the interpolation theory[J]. Proc. Roy. Soc. Edinburgh Sect. A, 1915, 35:181-194.[27] Ye P and Song Z. Truncation and aliasing errors for Whittaker-Kotelnikov-Shannon sampling expansion[J]. Appl. Math. J. Chinese Univ. Ser. B, 2012, 27(4):412-418. |