删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

急性白血病细胞中JAK/STAT5和PI3K/AKT信号通路对eIF4B的协同调控作用

本站小编 Free考研考试/2021-12-26

马云1,3, 李婷婷2, 冯日月1, 郭桂杰1, 潘启东2, 李建宁1, 陈吉龙1,2
1. 中国科学院微生物研究所 病原微生物与免疫学重点实验室, 北京 100101;
2. 福建农林大学 动物科学学院, 福建 福州 350002;
3. 中国科学院大学, 北京 100049
收稿日期:2020-01-07;接收日期:2020-08-19;网络出版时间:2020-09-10
基金项目:国家自然科学基金(Nos. U1805231, 81472611)资助

摘要:人类急性白血病(Acute leukemia,AL)是一类造血干细胞异常的克隆性恶性疾病。在临床上,急性白血病由于发病急、病程短等原因使其非常难以治愈。已有研究表明,慢性白血病的发生与真核转译起始因子4B (Eukaryotic initiation factor 4B,eIF4B)的活化密切相关,但是其在急性白血病发生中的作用尚不明确。为了探究eIF4B在急性白血病发生中的作用及其机理,利用PI3K抑制剂LY294002、AKT抑制剂AKTi以及Pim抑制剂SMI-4A特异性地分别阻断JAK/STAT5/Pim和PI3K/AKT/mTOR信号通路,检测这两条信号通路下游共同靶标分子eIF4B的磷酸化水平。研究发现,阻断一条信号通路可明显降低eIF4B的磷酸化水平,而同时阻断两条信号通路能够更为显著地降低eIF4B活性并以一种协同作用的方式诱导细胞发生凋亡。进一步通过检测细胞凋亡和裸鼠致瘤实验,发现干扰eIF4B表达抑制了急性白血病细胞的存活及其在裸鼠体内的肿瘤形成。此外,敲低eIF4B可显著降低抗凋亡蛋白Bcl-2和Bcl-XL的蛋白表达水平。综上所述,在急性白血病细胞中eIF4B的活性受JAK/STAT5/Pim与PI3K/AKT/mTOR两条信号通路的共同调控,进而通过影响Bcl-2和Bcl-XL的表达发挥抗细胞凋亡作用,并促进急性白血病细胞介导的肿瘤生长。此研究有利于深入了解急性白血病的发生发展机制,为该病的靶向治疗提供理论指导。
关键词:急性白血病JAK/STAT5/PimPI3K/AKT/mTOR真核转译起始因子4B
Synergistic role of JAK/STAT5 and PI3K/AKT signaling pathways in regulating eIF4B in acute leukemia
Yun Ma1,3, Tingting Li2, Riyue Feng1, Guijie Guo1, Qidong Pan2, Jianning Li1, Jilong Chen1,2
1. Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
2. College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Received: January 7, 2020; Accepted: August 19, 2020; Published: September 10, 2020
Supported by: National Natural Science Foundation of China (Nos. U1805231, 81472611)
Corresponding author: Jilong Chen. Tel: +86-10-64806007; E-mail: chenjl@im.ac.cn.

Abstract: Human acute leukemia (AL) is a clonal malignancy with abnormal hematopoietic stem cells. Clinically, AL is very difficult to cure due to its sudden onset and short course of disease progression. Previous studies have shown that eukaryotic initiation factor 4B (eIF4B) plays a critical role in the development of chronic leukemia. However, the involvement of eIF4B in human acute leukemia is still largely unknown. Therefore, we studied eIF4B function and its regulatory mechanism in human acute leukemia. We found that phosphorylation levels of eIF4B in acute leukemia cells were significantly reduced in response to treatment with either LY294002 (PI3K inhibitor), AKTi (AKT inhibitor) or SMI-4A (Pim inhibitor). Co-treatment with inhibitors targeting JAK/STAT5/Pim and PI3K/AKT/mTOR signaling dramatically promoted apoptosis of acute leukemia cells by downregulating eIF4B phosphorylation. Furthermore, in vitro and in vivo functional experiments showed that eIF4B played an important anti-apoptosis role in the acute leukemia cells by regulating the expression of anti-apoptotic proteins Bcl-2 and Bcl-XL. In contrast, silencing eIF4B inhibited the growth of acute leukemia cells as engrafted tumors in nude mice. Taken together, our results indicate the synergistic role of JAK/STAT5/Pim and PI3K/AKT/mTOR signaling pathways in regulating eIF4B phosphorylation in acute leukemia, and highlight eIF4B as a candidate therapeutic target for treatment of acute leukemia.
Keywords: acute leukemiaJAK/STAT5/PimPI3K/AKT/mTOReIF4B
急性白血病是造血干细胞的恶性克隆性疾病,发病时骨髓中异常的原始细胞及幼稚细胞(白血病细胞)大量增殖,蓄积于骨髓并抑制正常造血[1]。患病者若不经特殊治疗,平均生存期仅3个月左右,短者甚至在诊断数天后即死亡。急性白血病根据受累的细胞类型,通常可以分为急性淋巴细胞白血病(Acute lymphoblastic leukemia,ALL)和急性髓细胞白血病(Acute myeloid leukemia,AML)两大类。我国AML的发病率约为万分之0.162,而ALL则约为万分之0.069[2]。目前,临床上治疗急性白血病的方法主要集中于化疗、药物联用以及骨髓移植[3-4]。但由于伴有严重的并发症、感染和免疫排斥等问题,治疗效果大大降低[5]
肿瘤的发生与细胞内许多信号通路的功能紊乱密切相关,而细胞内最主要的调控细胞增殖及细胞存活的信号通路,如JAK/STAT5/Pim与PI3K/AKT/mTOR/S6K信号通路都可以调控eIF4B的磷酸化,从而影响特定的蛋白翻译。因此,eIF4B作为这些通路下游的汇集点,对于恶性肿瘤的发生和维持至关重要[6]。在结直肠癌中,MJ-56 (6-pyrrolidinyl-2-(3-bromostyryl)quinazolin- 4-one)减弱了表皮生长因子受体(Epidermal growth factor receptor,EGFR)、c-Met以及下游ERK介导的MAPK和PI3K/AKT/mTOR信号通路的活性,从而通过抑制eIF4B的磷酸化导致细胞的迁移能力下降[7]。在鳞状细胞癌(Squamous cell carcinomas,SCC)中,RSK活化的eIF4B可以引起Lamininγ2及c-Myc的表达上升,而所有的侵袭性SCC都表现为Lamininγ2高表达[8]。在肺腺癌中,Pim1通过磷酸化eIF4B的Ser406位点来调节c-Met的表达,进而促进细胞增殖、迁移和药物抗性[9]。此外,eIF4B还与淋巴管肌瘤病有关,S6K依赖的eIF4B磷酸化可以促进Fra1的转录,进而促进上皮细胞-间充质转化(Epithelial- mesenchymal transition,EMT)[10]。综上所述,多种类型肿瘤细胞中异常活化的信号通路,都可以通过调节eIF4B的磷酸化水平,调控细胞增殖或抗凋亡相关分子的表达。
本实验室在前期研究中已经初步探明eIF4B在v-ablbcr-abl癌基因诱导细胞癌变中的作用,并对JAK/STAT5/Pim与PI3K/AKT/mTOR这两条信号通路的协同调控机制进行了研究[11-12],但是对eIF4B在急性白血病发生过程中的作用尚不清楚。因此,本研究以eIF4B为切入点,旨在探究eIF4B在急性白血病中的功能和作用机理,以期为临床上治疗急性白血病提供新的参考。
1 材料与方法1.1 实验材料1.1.1 细胞株与质粒293T (人胚肾细胞)、HL-60 (人原髓细胞白血病细胞)、Sup-B15 (人Ph+急淋白血病细胞)、THP-1 (人急性单核细胞白血病细胞)细胞系均由本实验室保存;大肠杆菌Escherichia coli DH5α购自中国TIANGEN生物科技有限公司,课题中所用的pSIH1-GFP、pLP (VSV-G)、pLP1、pLP2包装质粒均为本实验室保存。
1.1.2 实验试剂分子生物学试剂:快速DNA内切酶、DNA连接酶(Thermo);高保真DNA聚合酶、DNA Marker (TaKaRa);质粒抽提试剂盒(TIANGEN)。
细胞生物学试剂:DMEM、RPMI 1640 (Invitrogen);细胞凋亡检测试剂盒(南京凯基生物公司)。
抗体:anti-EIF4B、anti-Phospho-EIF4B (Ser422)、anti-Bcl-2、anti-Bcl-XL (Santa Cruz)。
抑制剂:AKT inhibitor AKTi (Merck Millipore);PI3K inhibitor LY294002 (Sigma);etoposide (Santa Cruz);Pim Inhibitor SMI-4A (Calbiochem);PI3K inhibitor Idelalisib;JAK2 inhibitor Ruxolitinib (Selleck)。
1.1.3 实验动物裸鼠:4–5周龄BALB/c雌性裸鼠购自北京维通利华实验动物技术有限公司。
1.2 实验方法1.2.1 干扰质粒序列sh-eIF4B-1#靶向序列为5′-GGACAGGAAGT GAGTCATC-3′,sh-eIF4B-2#靶向序列为5′-GAC AAGTATCGAGATCGTTAT-3′。
1.2.2 JAK/STAT5/Pim和PI3K/AKT/mTOR信号通路的抑制实验利用小分子抑制剂处理细胞,特异性抑制JAK/STAT5/Pim和PI3K/AKT/mTOR信号通路:PI3K抑制剂LY294002、AKT抑制剂AKTi以及Pim抑制剂SMI-4A。依据这些抑制剂厂家提供的方法处理细胞,收取细胞样品,Western blotting检测JAK/STAT5/Pim和PI3K/AKT/mTOR下游共同靶标分子eIF4B的磷酸化水平。
1.2.3 细胞凋亡用无血清培养基加特定浓度的细胞凋亡诱导药物处理细胞一定时间后,离心收取细胞,PBS洗涤2次,弃上清加入300 μL结合缓冲液并重悬细胞转移至流式管,向细胞悬液中加入5 μL AnnexinV-APC和5 μL碘化丙啶,室温避光10–15 min后使用流式细胞仪分析细胞凋亡。
表 1 引物序列Table 1 Primer sequences
Primer name Sequence (5′–3′)
eIF4B-F GCACCTATGTCCCCAAACCA
eIF4B-R GAAGACGGCTCCGGTCAATA
Bcl-2-F GGTGGTGGAGGAGCTCTTCA
Bcl-2-R CAGCCAGGAGAAATCAAACAGA
Bcl-XL-F TCCCCATGGCAGCAGTAAAG
Bcl-XL-R CTCACCAATACCTGCATCTCCTT
GAPDH-F GAAGGTGAAGGTCGGAGTC
GAPDH-R GAAGATGGTGATGGGATTTC

表选项


1.2.4 裸鼠致瘤实验收集细胞并用150 μL预冷的PBS重悬后转移至1.5 mL EP管;将收集的细胞进行裸鼠皮下注射;若干天后对小鼠进行活体荧光成像检测肿瘤生长情况并剖瘤测量拍照记录结果。
2 结果与分析2.1 急性白血病细胞中eIF4B的磷酸化受JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路的调节我们在前期研究中发现在bcr-abl癌基因诱导的慢性粒细胞白血病(Chronic myeloid leukemia,CML)中,eIF4B受到JAK/STAT5/Pim和PI3K/ AKT/mTOR两条信号通路的共同调节[13]。由于慢性白血病和急性白血病发病机制不同,我们想探究在急性白血病细胞中eIF4B是否也受到了这种调控。首先我们用PI3K抑制剂LY294002、AKT抑制剂AKTi以及Pim抑制剂SMI-4A分别处理Sup-B15细胞[14],收取不同时间点细胞样品,应用Western blotting检测eIF4B的磷酸化水平,并通过ImageJ软件对Western blotting条带进行灰度值分析。实验结果表明,当用不同抑制剂分别处理Sup-B15细胞后,随着JAK/STAT5/Pim或者PI3K/AKT/mTOR信号通路被阻断,eIF4B的磷酸化水平发生了明显降低(图 1A–F)。使用相同的信号通路抑制剂处理THP-1细胞后,eIF4B的磷酸化也发生了下调(图 1G–L)。以上结果表明,在急性白血病细胞中eIF4B的磷酸化受到JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路的调节。
图 1 急性白血病细胞中eIF4B的磷酸化受JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路的调节 Fig. 1 Phosphorylation of eIF4B in acute leukemia cells is regulated by the JAK/STAT5/Pim and PI3K/AKT/mTOR pathways.(A–C) Sup-B15 was treated with LY294002, AKTi and SMI-4A, respectively, and protein samples were collected after 0, 4 and 8 h, the phosphorylation of eIF4B was examined by Western blotting. (D–F) Immunoblots were analyzed by ImageJ software (n=3; x±s; *: P < 0.05). (G–I) THP-1 was treated with LY294002, AKTi and SMI-4A, respectively, and protein samples were collected after 0, 4 and 8 h, the phosphorylation of eIF4B was examined by Western blotting. (J–L) ImageJ software was also used to analyze immunoblots (n=3; x±s; *: P < 0.05; **: P < 0.01).
图选项




2.2 JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路抑制剂协同诱导细胞凋亡上述结果表明,在急性白血病中eIF4B的活化受到了JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路的调节。那么,如果同时抑制两条信号通路会是什么结果呢?接下来,我们用SMI-4A和LY294002同时处理Sup-B15细胞,然后检测eIF4B的磷酸化水平,结果显示,与单独使用一种抑制剂相比,药物联用能够更为显著地降低eIF4B的磷酸化(图 2A)。既然在分子水平上同时阻断两条信号通路能够更有效地降低eIF4B的活性,而在前文中我们也提到eIF4B磷酸化水平的变化会影响凋亡。那么在细胞水平上,这种更为有效的抑制方法又会达到什么样的效果呢?于是,我们将不同浓度的SMI-4A与LY294002相互组合,用各种浓度组合的混合药物处理Sup-B15细胞48 h,然后检测细胞的凋亡情况。如图 2B所示,单独使用最高浓度10 μmol/L SMI-4A处理Sup-B15细胞48 h后,仍有约65%的细胞存活;单独使用最高浓度20 μmol/L LY294002处理细胞48 h后,也有约80%的细胞仍然存活;当使用10 μmol/L SMI-4A与20 μmol/L LY294002组合处理Sup-B15细胞48 h后,只剩约19%的细胞存活。其他浓度的组合也表明,药物联用能够诱导更显著的细胞凋亡。那么接下来我们希望阐明这种更为有效的联用法是否表现为一种协同的方式。我们用专业的药物协同分析软件CompuSyn来解释这一问题[15],结果如图 2C所示,图中每个点代表一种药物浓度组合,横坐标表示对细胞的杀伤效果(Fractional effect),“1”表示100%的细胞都发生了凋亡。纵坐标则表示该浓度组合的协同指数(Combination index),以“1”为界限,大于1表示两种药拮抗,等于1表示两种药呈现叠加效果,小于1表示药物呈协同效果,越接近0协同越显著。从图中可以看出,所有的药物组合浓度都以协同的方式诱导细胞发生凋亡。艾代拉里斯(Idelalisib)和鲁索替尼(Ruxolitinib)是近几年临床上治疗白血病的新药,分别是PI3K和JAK2的抑制剂[16-17],将这两种新药联用处理Sup-B15后,我们同样发现了eIF4B的磷酸化水平比单独加入一种抑制剂降低得更为明显(图 2D)。凋亡结果和CompuSyn软件分析也同样显示药物联用的效果更佳(图 2E–F)。综上所述,同时抑制JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路能够协同促进急性白血病细胞的凋亡。
图 2 JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路抑制剂协同诱导急性白血病细胞的凋亡 Fig. 2 The JAK/STAT5/Pim and PI3K/AKT/mTOR signaling pathway inhibitors co-induced apoptosis in acute leukemia cells.(A) The phosphorylation of eIF4B was examined after treatment with LY294002 and SMI-4A by Western blotting in Sup-B15 cells. (B) Sup-B15 cells were treated with different concentrations of SMI-4A combined with LY294002 and cell apoptosis was examined after 48 h treatment (n=3; x±s; *: P < 0.05). (C) Analysis by CompuSyn software showed that all LY294002 and SMI-4A combination concentrations induced cell apoptosis in a synergistic manner. (D) The protein expression level of eIF4B was examined after Sup-B15 treatment with Idelalisib and Ruxolitinib by Western blotting. (E) Sup-B15 cells were treated with different concentrations of Idelalisib combined with Ruxolitinib and cell apoptosis was examined after 48 h treatment (n=3; x±s; *: P < 0.05). (F) Analysis by CompuSyn software showed that all Idelalisib and Ruxolitinib combination concentrations induced cell apoptosis in a synergistic manner.
图选项




2.3 eIF4B在急性白血病细胞中发挥抗凋亡的作用既然同时阻断JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路后,eIF4B磷酸化水平的下降以及细胞凋亡差异都更为显著,那么,作为这两条信号通路的下游靶标分子,直接阻断eIF4B的表达是否效果会更佳呢?于是,我们在Sup-B15细胞中构建了干扰eIF4B的细胞系(图 3A),然后用凋亡诱导药物依托泊苷(etoposide)处理细胞24 h后进行流式细胞凋亡检测。结果显示,与对照组相比干扰eIF4B后Sup-B15细胞的存活率明显降低(图 3B)。为了进一步验证这一结论,我们又在HL-60细胞中构建了干扰eIF4B的细胞系(图 3C),结果同样表明,干扰eIF4B后细胞的存活率明显降低(图 3D)。综上所述,我们认为eIF4B在急性白血病细胞中是发挥抗凋亡作用的。
图 3 eIF4B在急性白血病细胞中发挥抗凋亡作用 Fig. 3 eIF4B plays an anti-apoptotic role in acute leukemia cells.(A–B) Control and eIF4B knockdown Sup-B15 cell lines were generated, cell viability was examined after 25 mmol/L etoposide treatment for 24 h (n=3; x±s; *: P < 0.05; **: P < 0.01). (C–D) Control and eIF4B knockdown THP-1 cell lines were generated. Cell viability was examined after 25 mmol/L etoposide treatment for 24 h (n=3; x±s; *: P < 0.05).
图选项




2.4 敲低eIF4B能够抑制急性白血病细胞在裸鼠皮下的肿瘤生长为了验证上述的结论,接下来我们在动物水平上进行了相应的实验。首先将相同数量对照和敲低eIF4B的HL-60细胞进行裸鼠皮下致瘤实验,3周以后采用动物活体荧光成像技术检测裸鼠的肿瘤生长情况(图 4A),然后处死小鼠,剖取瘤块,拍照并测算瘤块的体积(图 4B–C)。实验结果表明,敲低eIF4B的HL-60细胞在裸鼠皮下的生长速度明显要慢于对照细胞。在前文中我们也提到,多种肿瘤细胞中磷酸化的eIF4B可以通过调控抗凋亡相关分子的翻译而抑制细胞的凋亡。因此,我们检测了敲低eIF4B的HL-60细胞系中抗凋亡蛋白Bcl-2和Bcl-XL的表达,结果显示Bcl-2和Bcl-XL的mRNA表达水平并没有因为eIF4B的敲低而发生改变,但是它们的蛋白表达水平却因为eIF4B的敲低而发生了明显降低(图 4D–E)。综上所述,敲低eIF4B能够显著抑制急性白血病细胞在裸鼠皮下的肿瘤生长,并且eIF4B抑制细胞凋亡的作用是通过调控抗凋亡蛋白Bcl-2和Bcl-XL的蛋白表达水平来实现的。
图 4 敲低eIF4B能够抑制急性白血病细胞在裸鼠皮下的肿瘤生长 Fig. 4 eIF4B knockdown inhibited tumor growth of acute leukemia cells in nude mice.(A–B) Nude mice were subcutaneously injected with control and eIF4B knockdown cell lines, tumor growth was measured by bioluminescent imaging, and then excised and quantified. Shown were representative images from at least three independent experiments with the similar result. (C) The length and width of the lumps are then measured and the size of the lumps is calculated (n=3; x±s; **: P < 0.01). (D) The expression of Bcl-2 and Bcl-XL were detected using Western blotting in control and eIF4B knockdown cells. (E) The mRNA expression of Bcl-2 and Bcl-XL was detected by RT-PCR in control cells and eIF4B knockdown cells.
图选项




3 讨论在肿瘤的发生过程中,eIF4B处于高度磷酸化状态,它与细胞内许多信号通路的紊乱密切相关,对恶性肿瘤的发生和维持至关重要。在结直肠癌中,U0126 (MEK1/2 inhibitor)和GF109203X (PKC inhibitor)都能够有效阻断Carbacho (Cholinergic agonist)所诱导的eIF4B的磷酸化[18];而我们通过在急性白血病细胞Sup-B15和THP-1中分别加入LY294002和SMI-4A后发现,eIF4B的磷酸化水平是受JAK/STAT5/Pim和PI3K/AKT/ mTOR这两条信号通路调控的。目前,有越来越多的证据表明,多条信号通路可以共同调控在肿瘤发生过程中发挥重要功能的同一靶标分子。例如,与Bcl-2相关的细胞死亡激动剂(BCL2-associated agonist of cell death,BAD)是AKT和ERK信号通路在磷酸酶和PTEN缺陷肿瘤细胞中的共同靶点,AKT或ERK磷酸化BAD足以抑制BAD的活性。然而,只有同时抑制这两种途径才能激活BAD并诱导肿瘤细胞凋亡[19]。在乳腺癌中,利用吉非替尼(Gefitinib,EGFR inhibitor)和替西罗莫司(Temsirolimus,mTOR inhibitor)联用以协同抑制eIF4B磷酸化的方法对细胞凋亡的诱导效果也更加明显[20]。通过实验,我们发现在Sup-B15细胞中同时加入JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路的抑制剂后eIF4B的磷酸化水平下降得更加明显。细胞水平的实验则表明,药物联用能够诱导更显著的细胞凋亡,并且所有的药物组合浓度都以协同的方式诱导细胞发生凋亡。
eIF4B在细胞内的主要功能是通过增强eIF4A的RNA解旋酶活性进而调控5′-cap具有复杂二级结构的mRNA的翻译[21-22]。作为JAK/STAT5/Pim和PI3K/AKT/mTOR两条与肿瘤发生密切相关的信号通路共同的底物分子,eIF4B的表达变化可以特异性地影响特定基因mRNA的翻译,例如CDC25、ODC、XIAP、Bcl-2等,进而调控细胞增殖及细胞凋亡[23-24]。靶向eIF4B的siRNA仅对翻译产生很小的抑制作用,但却明显影响了昆虫细胞在低血清培养基中的生存;过表达eIF4B可以刺激果蝇培养细胞及眼成虫盘的分裂增殖[25]。我们通过构建干扰eIF4B的急性白血病细胞系并进行细胞凋亡实验发现,eIF4B在急性白血病细胞中是发挥抑制细胞凋亡功能的,裸鼠皮下致瘤实验表明,敲低eIF4B能够抑制急性白血病细胞在裸鼠皮下的肿瘤生长。同时我们还发现,敲低eIF4B能够显著降低抗凋亡蛋白Bcl-2和Bcl-XL的蛋白表达水平。
有研究表明,eIF4B的表达和活化在很多肿瘤细胞中都出现了异常。例如,在弥散性大B细胞淋巴瘤(Diffuse large B-cell lymphoma,DLBCL)病人样品中,高度活化的eIF4B通过促进mRNA的翻译导致ERCC5和DAXX合成上调,而ERCC5和DAXX的异常表达与患者预后及低存活率密切相关[26]。在乳腺癌细胞中,活化的MAPK及PI3K信号通路,都可以通过S6K磷酸化eIF4B,最终增强CIP2A (Cancerous inhibitor of PP2A)的表达,而CIP2A可以引起细胞的快速增殖[27]。在宫颈癌细胞中,敲低eIF4B会影响细胞的G2/M周期进程,抑制了细胞增殖[28]。最新的研究表明,长链非编码RNA (Long noncoding RNA,LncRNA)也可以参与调控eIF4B从而发挥相应的功能,例如,LncRNA-GMAN通过阻断PPP2R2A (Protein phosphatase 2A subunit B)与eIF4B的结合和eIF4B去磷酸化进程来维持其Ser422位点的磷酸化,从而抑制细胞凋亡并促进肝癌的转移[29-30]。此外,miR-216a通过直接靶向eIF4B而在口腔鳞状细胞癌中发挥抑癌作用[31]。有趣的是,研究发现eIF4B除了Ser406和Ser422位点磷酸化外,在神经调节过程中,其Ser504位点也可以被磷酸化而调节蛋白激酶Mζ的翻译以满足神经元的需要[32]。在神经元中,当FMR1 (Fragile X mental retardation 1) 5′UTR发生突变,便可能出现RAN翻译(Repeat-associated non-AUG-initiated translation),导致神经退行性疾病的发生,而eIF4B作为真核转译起始因子对这种非同寻常的翻译过程也起促进作用[33]。目前已经明确,超过90%的CML都是由Bcr-Abl癌蛋白诱导发生的,而具有持续酪氨酸激酶活性的Bcr-Abl癌蛋白又可以进一步活化eIF4B,从而增强癌细胞抗凋亡能力,并促进Bcr-Abl介导原代细胞发生恶性转化[34]。然而,在AML中eIF4B所发挥的作用及其机制尚不很清楚。不过有研究表明,在Bcr-Abl阴性的MV4-11急性白血病细胞中,FLT3-ITD (FLT3 tyrosine kinase domain)通过MEK/ERK和PDK1通路激活RSK1,被活化的RSK1一方面可以使eIF4B的Ser422位点发生磷酸化,另一方面又可以通过与Pim的协同作用加强eIF4B Ser406位点的磷酸化,增强MV4-11细胞的增殖和存活[35]。在本研究中,我们发现eIF4B在急性白血病细胞中受JAK/STAT5/Pim和PI3K/AKT/mTOR两条信号通路的协同调控,进而通过影响抗凋亡蛋白Bcl-2和Bcl-XL的翻译而发挥抑制细胞凋亡的功能,促进了肿瘤的发生发展。这些发现为阐释eIF4B的功能提供了重要参考,也为阐明急性白血病的发病机理提供新的科学依据。
本课题还有许多方面值得深入研究,例如,可以通过shRNA介导的干扰表达或CRISPR-Cas9技术特异性地靶向PI3K、AKT和Pim,以阻断JAK/STAT5/Pim和PI3K/AKT/mTOR信号通路,进一步验证这两条信号通路对eIF4B的协同调控作用。同时,利用信号分子抑制剂或shRNA干扰表达技术长时间抑制一条信号通路,检测另一条信号通路以及eIF4B在此过程中的变化,并结合组学分析深入探究急性白血病细胞中JAK/STAT5/Pim和PI3K/AKT/mTOR信号通路对eIF4B协同调控的分子机理。此外,我们还将利用eIF4B基因敲除小鼠,通过前期建立的小鼠白血病模型[36-37],探讨eIF4B在肿瘤微环境中的作用。收集急性白血病病人临床样本,检测其中eIF4B的表达与活化情况,并结合临床数据来系统分析eIF4B与急性白血病发生发展和预后之间的关系,以期为临床上治疗急性白血病提供理论指导。
参考文献
[1] Rose-Inman H, Kuehl D. Acute leukemia. Hematol Oncol Clin North Am, 2017, 31(6): 1011-1028. DOI:10.1016/j.hoc.2017.08.006
[2] Chen XC, Hong Y, Zheng PP, et al. The economic research of arsenic trioxide for the treatment of newly diagnosed acute promyelocytic leukemia in China. Cancer, 2020, 126(2): 311-321.
[3] Gutierrez A, Kentsis A. Acute myeloid/ T-lymphoblastic leukaemia (AMTL): a distinct category of acute leukaemias with common pathogenesis in need of improved therapy. Br J Haematol, 2018, 180(6): 919-924. DOI:10.1111/bjh.15129
[4] Tasian SK, Hunger SP. Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics. Br J Haematol, 2017, 176(6): 867-882. DOI:10.1111/bjh.14474
[5] Jentzsch M, Schwind S, Bach E, et al. Clinical challenges and consequences of measurable residual disease in Non-APL acute myeloid leukemia. Cancer, 2019, 11(11): 1625. DOI:10.3390/cancers11111625
[6] Shahbazian D, Parsyan A, Petroulakis E, et al. EIF4B controls survival and proliferation and is regulated by proto-oncogenic signaling pathways. Cell Cycle, 2010, 9(20): 4106-4109. DOI:10.4161/cc.9.20.13630
[7] Chen HJ, Jiang YL, Lin CM, et al. Dual inhibition of EGFR and c-Met kinase activation by MJ-56 reduces metastasis of HT29 human colorectal cancer cells. Int J Oncol, 2013, 43(1): 141-150.
[8] Degen M, Barron P, Natarajan E, et al. RSK activation of translation factor eIF4B drives abnormal increases of laminin γ2 and MYC protein during neoplastic progression to squamous cell carcinoma. PLoS ONE, 2013, 8(10): e78979.
[9] Cao LJ, Wang F, Li SY, et al. Pim1 kinase promotes cell proliferation, metastasis and tumor growth of lung adenocarcinoma by potentiating the c-MET signaling pathway. Cancer Lett, 2019, 444: 116-126. DOI:10.1016/j.canlet.2018.12.015
[10] Gu XX, Yu JJ, Ilter D, et al. Integration of mTOR and estrogen-ERK2 signaling in lymphangioleiomyomatosis pathogenesis. Proc Natl Acad Sci USA, 2013, 110(37): 14960-14965. DOI:10.1073/pnas.1309110110
[11] Yang JL, Wang J, Chen K, et al. EIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes. Cancer Res, 2013, 73(15): 4898-4908. DOI:10.1158/0008-5472.CAN-12-4277
[12] Qiu XX, Guo GJ, Chen K, et al. A requirement for SOCS-1 and SOCS-3 phosphorylation in Bcr-Abl-induced tumorigenesis. Neoplasia, 2012, 14(6): 547-558. DOI:10.1596/neo.12230
[13] Chen K, Yang JL, Li JN, et al. EIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants. Oncotarget, 2016, 7(9): 10073-10089. DOI:10.18632/oncotarget.7164
[14] Md Mokhtar AH, Malik IA, Aziz NAAA, et al. LY294002, a PI3K pathway inhibitor, prevents leptin-induced adverse effects on spermatozoa in Sprague-Dawley rats. Andrologia, 2019, 51(3): e13196. DOI:10.1111/and.13196
[15] El Hassouni B, Mantini G, Petri GL, et al. To combine or not combine: drug interactions and tools for their analysis. Reflections from the EORTC-PAMM course on preclinical and early-phase clinical pharmacology. Anticancer Res, 2019, 39(7): 3303-3309. DOI:10.21873/anticanres.13472
[16] Xin TY, Han HT, Wu WY, et al. Idelalisib inhibits vitreous-induced Akt activation and proliferation of retinal pigment epithelial cells from epiretinal membranes. Exp Eye Res, 2019, 190: 107884.
[17] Li LL, Shang LM, Gao J, et al. Janus kinase inhibitor ruxolitinib blocks thymic regeneration after acute thymus injury. Biochem Pharmacol, 2020, 171: 113712. DOI:10.1016/j.bcp.2019.113712
[18] Liu ZY, Cho NJ. Muscarinic acetylcholine receptors mediate eIF4B phosphorylation in SNU-407 colon cancer cells. Biochem Biophys Res Commun, 2016, 480(3): 450-454.
[19] She QB, Solit DB, Ye Q, et al. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell, 2005, 8(4): 287-297. DOI:10.1016/j.ccr.2005.09.006
[20] Madden JM, Mueller KL, Bollig-Fischer A, et al. Abrogating phosphorylation of eIF4B is required for EGFR and mTOR inhibitor synergy in triple-negative breast cancer. Breast Cancer Res Treat, 2014, 147(2): 283-293. DOI:10.1007/s10549-014-3102-8
[21] Sen ND, Zhou FJ, Harris MS, et al. eIF4B stimulates translation of long mRNAs with structured 5'UTRs and low closed-loop potential but weak dependence on eIF4G. Proc Natl Acad Sci USA, 2016, 113(38): 10464-10472. DOI:10.1073/pnas.1612398113
[22] Zoi Andreou A, Harms U, Klostermeier D. eIF4B stimulates eIF4A ATPase and unwinding activities by direct interaction through its 7-repeats region. RNA Biol, 2017, 14(1): 113-123. DOI:10.1080/15476286.2016.1259782
[23] Roux PP, Topisirovic I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspect Biol, 2012, 4(11): a012252.
[24] Shahbazian D, Parsyan A, Petroulakis E, et al. Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol Cell Biol, 2010, 30(6): 1478-1485. DOI:10.1128/MCB.01218-09
[25] Schatz JH, Wendel HG. Targeted cancer therapy: what if the driver is just a messenger?. Cell Cycle, 2011, 10(22): 3830-3833. DOI:10.4161/cc.10.22.18288
[26] Horvilleur E, Sbarrato T, Hill K, et al. A role for eukaryotic initiation factor 4B overexpression in the pathogenesis of diffuse large B-cell lymphoma. Leukemia, 2014, 28(5): 1092-1102. DOI:10.1038/leu.2013.295
[27] Choi YA, Koo JS, Park JS, et al. Estradiol enhances CIP2A expression by the activation of p70 S6 kinase. Endocr Relat Cancer, 2014, 21(2): 189-202.
[28] Shahbazian D, Parsyan A, Petroulakis E, et al. Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol. Cell. Biol, 2010, 30(6): 1478-1485.
[29] Zhu HR, Ouyang J, Chen JL. Function and regulation of long non-coding RNAs in tumorigenesis and host innate immunity-a review. Acta Microbiol Sin, 2015, 55(7): 801-812 (in Chinese).
朱鹤然, 欧阳晶, 陈吉龙. 长链非编码RNA在肿瘤发生和天然免疫中的功能与调控机制. 微生物学报, 2015, 55(07): 801-812.
[30] Xu JB, Lu YJ, Liu QY, et al. Long noncoding RNA GMAN promotes hepatocellular carcinoma progression by interacting with eIF4B. Cancer Lett, 2020, 473: 1-12. DOI:10.1016/j.canlet.2019.12.032
[31] Li L, Ma HQ. MicroRNA-216a inhibits the growth and metastasis of oral squamous cell carcinoma by targeting eukaryotic translation initiation factor 4B. Mol Med Rep, 2015, 12(2): 3156-3162. DOI:10.3892/mmr.2015.3761
[32] Bettegazzi B, Bellani S, Roncon P, et al. eIF4B phosphorylation at Ser504 links synaptic activity with protein translation in physiology and pathology. Sci Rep, 2017, 7(1): 10563. DOI:10.1038/s41598-017-11096-1
[33] Linsalata AE, He F, Malik AM, et al. DDX3X and specific initiation factors modulate FMR1 repeat-associated non-AUG-initiated translation. EMBO Rep, 2019, 20(9): e47498.
[34] Sun YN, Chen N, Wang XF, et al. Mechanism underlying tumorigenesis induced by Bcr-Abl oncogene and A-MuLV virus. Chin J Biotech, 2018, 34(12): 1943-1952 (in Chinese).
孙亚楠, 陈纳, 王雪飞, 等. Bcr-Abl癌基因与A-MuLV病毒诱导肿瘤发生的机理. 生物工程学报, 2018, 34(12): 1943-1952.
[35] Watanabe D, Nogami A, Okada K, et al. FLT3-ITD Activates RSK1 to enhance proliferation and survival of AML cells by activating mTORC1 and eIF4B cooperatively with PIM or PI3K and by inhibiting bad and BIM. Cancers (Basel), 2019, 11(12): 1827. DOI:10.3390/cancers11121827
[36] Zhang HJ, Li SG. Induction of chronic myeloid leukemia in mice//Li S, Zhang H, Eds. Chronic Myeloid Leukemia. New York, NY: Humana Press, 2016, 1465: 17–25.
[37] Wang XF, Yang JL, Guo GJ, et al. Novel lncRNA-IUR suppresses Bcr-Abl-induced tumorigenesis through regulation of STAT5-CD71 pathway. Mol Cancer, 2019, 18(1): 84. DOI:10.1186/s12943-019-1013-3

相关话题/细胞 信号 肿瘤 药物 实验