河北农业大学 生命科学学院 河北省植物生理与分子病理学重点实验室,河北 保定 071001
收稿日期:2019-01-31;接收日期:2019-06-10;网络出版时间:2019-06-28
基金项目:河北省博士研究生创新项目(No. CXZZBS2019103),国家自然科学基金 (Nos. 31171472, 31871548) 资助。
摘要:翻译控制肿瘤蛋白(Translationally controlled tumor protein, TCTP)广泛存在于真核细胞中,参与调节细胞分裂、植物生长发育,并介导植物抵御病原物侵染。蔗糖非酵解型蛋白激酶(SNF1- related protein kinase, SnRK1)在酵母、动物和植物中非常保守,并参与包括糖代谢和抵抗非生物和生物胁迫在内的一系列生理过程。本实验室前期工作证明TaTCTP响应叶锈菌侵染并参与诱发寄主产生防卫反应。为了深入探讨TaTCTP在叶锈菌侵染小麦诱发的防卫反应中发挥的作用,采用串联亲和纯化(TAP)与质谱(MS)联用技术,鉴定出SnRK1可能为TaTCTP潜在互作蛋白。文中对TCTP和SnRK1的相互作用进行了研究。酵母双杂交结果表明,同时携带TCTP和SnRK1的酵母可以在SD/-Leu/-Trp/-His/-Ade (SD/-LWHA, 四缺)培养基上生长,说明TCTP与SnRK1在酵母双杂交系统中可以发生相互作用;通过双分子荧光互补实验,发现TCTP与SnRK1发生相互作用的荧光信号分布在细胞质中;进一步用Co-IP实验证明TCTP和SnRK1可以发生相互作用。本研究为深入研究TaTCTP在小麦与叶锈菌互作过程中的作用机制奠定了重要基础,对进一步完善小麦抵御叶锈菌侵染的分子机理具有重要意义。
关键词:翻译控制肿瘤蛋白蔗糖非酵解型蛋白激酶酵母双杂交双分子荧光互补免疫共沉淀
Interaction between wheat translationally controlled tumor protein TCTP and SNF1-related protein kinase SnRK1
Nan Ma, Jinzhu Qiao, Wenqian Tang, Tianjie Sun, Na Liu, Yan Chen, Xingtong Lu, Shengfang Han, Dongmei Wang
Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
Received: January 31, 2019; Accepted: June 10, 2019; Published: June 28, 2019
Supported by: Hebei Innovation Funding Program for Doctoral Candidates (No. CXZZBS2019103), National Natural Science Foundation of China (Nos. 31171472, 31871548)
Corresponding author: Shengfang Han. Tel: +86-312-7528276; E-mail: hansf123@163.com;
Dongmei Wang. Tel: +86-312-7528276; E-mail: dongmeiwang63@126.com.
Abstract: Translationally controlled tumor proteins (TCTP) and SNF1- related protein kinase (SnRK1) are conserved and widely present in eukaryotic cells. TCTP regulates cell division, plant growth and development, and mediates plant resistance against pathogen infection. SnRK1 participates in a range of physiological processes including sugar metabolism and resistance to abiotic and biotic stresses. Previous work in our laboratory demonstrated that wheat TCTP can respond to Puccinia triticina infection and induce host defense responses. In order to further investigate the mechanism of TaTCTP in wheat resistance to Puccinia triticina infection, we used TAP (tandem affinity purification) and mass spectrometry to screen the potential interactants of TaTCTP. A SNF1- related protein kinase (SnRK1) was identified as a potential interacting protein of TaTCTP. The results of yeast two-hybrid assay showed that TCTP could interact with SnRK1 in yeast, and the yeast carrying TCTP and SnRK1 could grow on SD/-Leu/-Trp/-His/-Ade (SD/-LWHA) medium. The fluorescence signal of the interaction between TCTP and SnRK1 was found to be distributed in the cytoplasm in the Bi-fluorescense complementation experiment. Co-IP experiments further showed that TCTP and SnRK1 could interact in plant cells. This study lays an important foundation for further studying the mechanism of TaTCTP in the interaction between wheat and Puccinia triticina, and it play a great influence on further improving the molecular mechanism of wheat resistant to Puccinia triticina.
Keywords: translationally controlled tumor proteinsSNF1- related protein kinaseyeast two hybridBiFCCo-IP
翻译控制肿瘤蛋白是一类保守且广泛存在于真核细胞中的蛋白质[1]。自1981年从小鼠成纤维细胞中发现并鉴定以来[2],TCTP被认为具有广泛的生物学功能,包括抑制细胞凋亡[3]、参与组胺的释放[4]、调控细胞周期与细胞分化[5]、参与修复DNA损伤[6]等。在植物中,TCTP影响细胞的生长[7]、响应乙烯信号[8]、降低重金属汞诱导的活性氧(ROS)对组织的伤害[9]。此外,有报道指出,TCTP响应胡椒黄花叶病毒PepYMV的侵染[10]、小麦白粉菌的侵染[11-12]和小麦叶锈菌的侵染[13],说明TCTP在植物与病原菌互作过程中可能发挥重要作用。
小麦是重要的粮食作物,小麦在其生长周期常受到多方不利因素的影响,其中,由小麦叶锈菌Puccinia triticina侵染引起的小麦叶锈病是危害小麦生产的严重病害。已有报道,在小麦抵御条锈菌侵染的过程中TCTP发挥重要作用,采用病毒诱导的基因沉默(Virus induced gene silencing, VIGS)技术沉默小麦中的TCTP,很大程度地降低了植株对条锈菌的抗性[14]。本课题组前期实验证明,在由小麦抗叶锈近等基因系TcLr19和叶锈菌生理小种366组成的不亲和组合中,TCTP的转录水平在测定范围内随接种时间的延长呈现逐渐增加的趋势,但其在蛋白水平并无明显变化[13]。为了进一步研究TCTP在小麦抵御叶锈菌侵染诱发的防卫反应过程中的作用机制,完善植物抗病信号转导网络,本课题组前期借助串联亲和纯化-质谱鉴定(TAP-MS)技术,建立了TCTP在小麦-叶锈菌互作过程中的潜在互作蛋白库,从中发现了一个与TCTP潜在互作的蛋白即蔗糖非酵解型蛋白激酶1 (SNF1- related protein kinase, SnRK1)。
SnRK最先发现于酵母中,由于缺失该基因的酵母突变体不能够利用无葡萄糖培养基中的甘油和乙醇等碳源,故该突变体命名为snf1 (Sucrose non-fermenting 1)[15]。在动物中的SnRK被命名为AMPK (AMP-activated protein kinase),得名于该蛋白受细胞内AMP/ATP比例的升高而激活[16]。植物中的SnRK分为3个亚族[17],SnRK2、SnRK3/CIPK为植物特有,而SnRK1则与酵母SNF1和哺乳动物AMPK高度同源[18]。SnRK1通常在细胞能量不足的情况下被激活,并抑制诸多生物合成反应以及植物生长[19-23]。SnRK1被认为参与生长发育、非生物胁迫应答以及疾病防御在内的多种生物学进程。例如,拟南芥SnRK1可磷酸化转录因子bZIP63,改变后者的二聚化状态,从而通过影响bZIP63对下游基因的表达调控而应答饥饿胁迫[24]。Kim等报道了一种SnRK1家族的蛋白AKIN10,可以通过磷酸化乙烯受体EIN3而延迟乙烯促进的植物器官衰老[25]。另有报道,AKIN10还可以通过磷酸化作用下调AtMYC2介导的盐胁迫耐受能力[26]。小麦SnRK1还可以与TaFROG相互作用,介导植物对真菌病原禾谷镰刀菌的抗性[27]。鉴于目前对TCTP和SnRK1的研究进展,结合本实验室对TCTP在小麦与叶锈菌互作过程中功能研究的初步结果,本研究借助酵母双杂交、双分子荧光互补实验和Co-IP进一步验证二者间的相互作用,明确二者发生相互作用的细胞部位,对进一步研究TCTP和SnRK1在小麦与叶锈菌互作过程中的功能,丰富和完善小麦抗叶锈病机制具有重要意义。
1 材料与方法1.1 植物材料培养小麦Triticum aesetrum抗叶锈近等基因系TcLr26与本生烟草Nicotiana benthamiana为本课题组长期保存。
小麦种植后,生长至第一片叶完全展开后,接种小麦叶锈菌生理小种260,小麦的种植条件和叶锈菌的接种采用Qiao等[28]的方法。本生烟草在温室中生长21 d左右,至4–5片叶完全展开时进行瞬时表达实验,具体种植条件参照Sparkes等的方法[29]。
1.2 实验中所用引物本实验所涉及的引物及其名称和用途见表 1。
表 1 引物信息Table 1 Primer information
Primer name | Primer sequence (5′-3′) | Experiments |
TCTP F | ATGCTCGTGTACCAGGACAA | Cloning the CDS of TaTCTP |
TCTP R | TTAAGCGTAATCTGGAACAT | |
SnRK F | ATGGACGCAGCAGGCAGAGATGCCA | Cloning the CDS of TaSnRK1 |
SnRK R | TCAAAGGACTCTCAGCTGGGTTAGG | |
Y2H-TCTP F | GGGAATTCATGCTCGTGTACCAGGACAA | TaTCTP Y2H vector construction |
Y2H-TCTP R | GGGGATCCTTAAGCGTAATCTGGAACAT | |
Y2H-SnRK1 F | GGGAATTCATGGACGCAGCAGGCAGAGATGCCA | TaSnRK1 Y2H vector construction |
Y2H-SnRK1 R | GGGGATCCTCAAAGGACTCTCAGCTGGGTTAGG | |
BiFC-TCTP F | GGGGATCCATGCTCGTGTACCAGGACAA | TaTCTP BiFC vector construction |
BiFC-TCTP R | GGCTCGAGTTAAGCGTAATCTGGAACAT | |
BiFC-SnRK1 F | GGGGATCCATGGACGCAGCAGGCAGAGATGCCA | TaSnRK1 BiFC vector construction |
BiFC-SnRK1 R | GGCTCGAGTCAAAGGACTCTCAGCTGGGTTAGG | |
BV-TCTP F | CCATGGATTACAAGGATGACGACGATAAGCTCGT GTACCAGGACAAGC | TaTCTP-Flag plant expression vector construction |
BV-TCTP R | GGTCACCTTAGCACTTGACCTCTTTCAGCC | |
BV-SnRK1 F | CCATGGATGGACGCAGCAGGCAGAGATGCC | TaSnRK1-GFP plant expression vector construction |
BV-SnRK1 R | CCATGGATGATGATGATGATGATGAAGGA |
表选项
1.3 基因克隆将叶锈菌生理小种260接种于小麦叶片表面,48 h后取接种叶片并在液氮中速冻,打碎材料后提取总RNA,并将其反转录为cDNA。采用引物TCTP F/R扩增TaTCTP编码区全长(长度为507 bp),利用引物SnRK1 F/R扩增TaSnRK1的编码区全长(长度为1 503 bp),并分别连接至克隆载体pEASY-T1上,蓝白斑筛选后,测序由北京华大基因股份有限公司完成。
1.4 酵母双杂交载体构建为了获得用于构建酵母双杂交载体的TaTCTP和TaSnRK1开放阅读框序列,分别采用引物Y2H TCTP F/R和Y2H SnRK1 F/R进行扩增。因其酶切位点与基因之间无保护碱基,这两个基因分别与其在最终载体中上游的Active domain和Binding domain处于相同的开放阅读框。将扩增产物进行电泳并切胶回收,采用EcoRⅠ和BamHⅠ进行双酶切后,与同样经双酶切的载体pGADT7-AD和pGBKT7连接,将其转化大肠杆菌TOP10菌株。对得到的单克隆进行PCR鉴定,测序由北京华大基因股份有限公司完成。在测序时,pGADT7-AD- TaTCTP和pGADT7-AD-TaSnRK1使用通用引物T7和3AD,pGBKT7-TaTCTP和pGBKT7-TaSnRK1采用通用引物T7和3BD,所得测序结果可用DNAMAN软件进行比对分析。
1.5 酵母双杂交使用PEG/LiAc法转化酵母AH109。实验组为pGBKT7-TaTCTP和pGADT7-AD-TaSnRK1共转化、pGBKT7-TaSnRK1和pGADT7-AD-TaTCTP共转化,以pGADT7和pGBKT7空载体共转化作对照。为了检测两个基因的自激活活性,以pGBKT7-TaTCTP和pGBKT7-TaSnRK1载体分别与pGADT7-AD空载体共转化。将转化后的酵母分别涂在SD/-Leu/-Trp (SD/-LW, 二缺)平板培养基上,放置28 ℃培养箱中培养3-4 d。然后挑取单菌落至SD/-LW液体培养基中振荡培养,直至OD600≈0.5,取5 μL菌液并分别滴在SD/-LW、SD/-Leu/-Trp/-His (SD/-LWH, 三缺)和SD/-LWHA平板培养基上,在28 ℃培养箱中培养5 d,相机拍照后记录结果。
使用ONPG法[30]对酵母的MEL1基因活性进行检测。将灭菌后的滤纸在长出菌落的SD/-LW培养基上影印,将滤纸经液氮反复冻融10次,置于干净的培养皿中。在滤纸上滴加含有20 mg/L X-Gal的Z-Buffer (16.1 g/L Na2HPO4·7H2O、5.5 g/L Na2HPO4·H2O、0.75 g/L KCl、0.246 g/L MgSO4·7H2O),避光、30 ℃静置5 h,拍照记录。
1.6 双分子荧光互补载体的构建为了获得用于构建双分子荧光互补载体的TaTCTP和TaSnRK1开放阅读框序列,使用引物BiFC TCTP F/R和BiFC SnRK1 F/R分别进行扩增,酶切位点与基因之间无保护碱基,使这两个基因分别与其在最终载体中上游的NE和CE处于相同的开放阅读框。将扩增产物进行电泳后回收,经BamHⅠ和KpnⅠ双酶切后,与同样经双酶切的载体pSPYNE和pSPYCE进行连接,转化大肠杆菌TOP10菌株。使用片段扩增用引物分别对连pSPYNE-TaTCTP和pSPYCE-TaTCTP单克隆进行PCR鉴定,测序由北京华大基因股份有限公司完成,使用DNAMAN软件对测序结果进行比对分析。
1.7 双分子荧光互补实验采用瞬时表达法,将携带有相互作用蛋白基因的质粒在烟草叶片中表达[29]。对分别携带有pSPYNE-TaTCTP、pSPYCE-TaTCTP、pSPYNE- TaSnRK1和pSPYCE-TaSnRK1质粒的农杆菌GV3101进行单克隆培养,OD600值约为0.8时,5 000×g离心3 min后富集菌体,所得菌体用无菌水洗涤,再用烟草侵染缓冲液(9.76 g/L MES、0.76 g/L Na3PO4·12H2O、5 g/L葡萄糖、0.1 mmol/L AS)重悬菌体。将携带有pSPYNE和pSPYCE的农杆菌按照表 2的组合混合,例如:第1组为pSPYNE和pSPYCE-TaTCTP混合,第5组为pSPYNE-TaTCTP和pSPYCE-TaSnRK1混合,两种菌液的混合比例为1:1,并在烟草叶片下表皮注射。48 h后取烟草叶片,使用激光扫描共聚焦显微镜(FV1000,奥林巴斯)在488 nm观察并照相。
表 2 BiFC实验所用的农杆菌组合携带的基因Table 2 Genes carried by combination of Agrobacterium used in BiFC experiment
# | pSPYNE | pSPYCE |
1 | – | TaTCTP |
2 | – | TaSnRK1 |
3 | TaTCTP | – |
4 | TaSnRK1 | – |
5 | TaTCTP | TaSnRK1 |
6 | TaSnRK1 | TaTCTP |
表选项
1.8 Co-IP植物表达载体的构建本研究涉及的免疫共沉淀(Co-IP)实验所需载体均以pCAMBIA3301为背景骨架进行构建。pCAMBIA3301带有受CaMV 35S启动子驱动的GUS基因,在GUS基因的上下游分别有NcoⅠ和BstE Ⅱ酶切位点。以引物BV-TCTP F/R扩增TaTCTP CDS区全长,并经过NcoⅠ和BstE Ⅱ酶切后连接至pCAMBIA3301载体上。使用引物BV-SnRK1 F/R对去掉终止密码子的TaSnRK1 CDS区全长进行扩增,以NcoⅠ酶切,并连接至载体pCAMBIA3301-GFP。对连接产物转化大肠杆菌,以硫酸卡那霉素筛选,经过菌落PCR鉴定、酶切鉴定和测序验证后,可以分别得到受CaMV 35S启动子驱动的Flag-TaTCTP基因植物表达载体和受CaMV 35S启动子驱动的TaSnRK1-GFP融合表达载体。
1.9 Co-IP实验免疫共沉淀是验证蛋白质相互作用的经典技术,本实验所用的Co-IP方法参考Mair等的研究[24]。将携带Flag-TCTP和SnRK1-GFP (或GFP)表达载体的农杆菌组合注射烟草下表皮,48 h后取材并液氮研磨。使用冰上预冷的RIPA缓冲液提取总蛋白,并在蛋白中加入Anti-Flag Mouse monoclonal antibody (稀释度1:500)捕获标签蛋白。在捕获后的蛋白提取液中加入Protein A/G agarose,并离心收集。在Protein A/G agarose中加入2×蛋白上样缓冲液并煮沸,经10% SDS-PAGE分离后,转膜进行Western blotting检测,一抗为Anti-GFP Mouse monoclonal antibody (稀释度1:2 000),使用ECL发光检测抗体分布并以X光片成像。
2 结果与分析2.1 酵母双杂交载体的构建酵母双杂交载体以pGADT7-AD和pGBKT7为载体骨架,使用酶切-连接法构建。使用引物Y2H-TCTP F/R扩增TaTCTP编码区全长,使用引物Y2H-SnRK1 F/R扩增TaSnRK1编码区全长。分别和克隆载体连接,后将酶切正确的克隆产物进行测序鉴定。鉴定正确的克隆产物和表达载体pGADT7-AD和pGBKT7分别经EcoRⅠ和BamHⅠ双酶切,将基因片段和载体片段回收,并分别进行连接、转化大肠杆菌。酶切验证结果表明在约为507 bp和1 503 bp处检测到DNA片段(图 1),片段长度与TaTCTP和TaSnRK1的预期序列长度相同,表示载体构建成功。
图 1 酵母双杂交载体的验证 Fig. 1 Varification of yeast two-hybrid vectors construct. Vectors pGADT7-AD and pGBKT7 for yeast two-hybrid were ligated to TaTCTP and TaSnRK1 open reading frame sequences, respectively, and the constructs were verified by EcoRⅠ and BamHⅠ digestion. The arrows indicate TaTCTP or TaSnRK1 coding region fragments, "M" indicates DNA molecular weight standard, masured with DL 2 000 DNA marker (TaKaRa), "+" and "–" representing digested and undigested plasmids, respectively. |
图选项 |
2.2 双分子荧光互补载体的构建双分子荧光互补载体以pSPYNE和pSPYCE为载体骨架,使用酶切-连接法构建,与酵母双杂交载体构建的过程类似。使用引物BiFC-TCTP F/R扩增TaTCTP编码区全长,使用引物BiFC-SnRK1 F/R扩增TaSnRK1编码区全长。连接克隆载体后测序鉴定。将鉴定正确的克隆与表达载体pSPYNE和pSPYCE分别经BamHⅠ和KpnⅠ双酶切,并分别连接、转化大肠杆菌。酶切鉴定结果显示,与酶切前比较分别在约为507 bp和1 503 bp处检测到DNA片段(图 2),与TaTCTP和TaSnRK1的预期序列长度一致,表示载体构建成功。
图 2 双分子荧光互补载体的验证 Fig. 2 Varification of Bimolecular Fluorescence Complementary vectors construct. The vectors pSPYNE and pSPYCE used in the bimolecular fluorescence complementation assay were ligated to TaTCTP and TaSnRK1 open reading frame sequences, respectively. Constructs were verified by BamHⅠand KpnⅠdigestion. The arrows indicate TaTCTP or TaSnRK1 coding region fragments, "M" indicates DNA molecular weight standard, masured with DL2 000 DNA marker (TaKaRa); "+" and "–" representing digested and undigested plasmids, respectively. |
图选项 |
2.3 免疫共沉淀植物表达载体的构建Co-IP实验选择的植物表达载体骨架为pCAMBIA3301,该载体为典型的植物双元表达载体,可在转基因植株中表达草胺膦乙酰转移酶(Phosphinothricin acetyltransferase, PAT)和GUS。本实验以NcoⅠ和BstE Ⅱ将GUS基因切下,并连接所需的TaTCTP-Flag片段,从而使目的片段受原GUS基因上游的CaMV 35S启动子调控。此外,对于连接有GFP基因的pCAMBIA3301-GFP载体,使用Nco Ⅰ将载体线性化,并连接TaSnRK1基因的开放阅读框,开放阅读框下游的终止密码子“TGA”被去掉,以实现和下游GFP基因的融合表达。上述两个载体在连接后,分别使用NcoⅠ/BstEⅡ和NcoⅠ酶切鉴定。酶切后的pCAMBIA3301-Flag-TaTCTP和pCAMBIA3301-TaSnRK1-GFP均可以检测出TaTCTP和TaSnRK1预期分子量大小的条带(图 3),表示载体构建成功。
图 3 Co-IP植物表达载体的验证 Fig. 3 Varification of Co-IP Plant expression vectors construct. The vectors pCAMBIA3301 and pCAMBIA3301-GFP used in the Co-IP experiment were ligated to Flag-TaTCTP and TaSnRK1-GFP open reading frame sequences, respectively. Constructs were verified by NcoⅠ/BstEⅡor NcoⅠdigestion. The arrows indicate Flag-TaTCTP or TaSnRK1-GFP coding region fragments, "M" indicates DNA molecular weight standard, masured with DL 2 000 DNA marker (TaKaRa); "+" and "–" representing digested and undigested plasmids, respectively. |
图选项 |
2.4 TCTP与SnRK1相互作用的酵母双杂交检测本研究的酵母双杂交使用GAL4转录因子拆分系统,该系统具有4个报告基因,分别以HIS3、ADE2、MEL1和AUR1-C对应组氨酸缺陷互补、腺嘌呤缺陷互补、α-半乳糖苷酶和金担子素A抗性[31],本研究检测了前3个报告基因的活性。结果显示(图 4),共同转化携带TaTCTP和TaSnRK1开放阅读框质粒的酵母可以在SD/-LWH和SD/-LWHA培养基上生长,说明HIS3和ADE2报告基因被激活。将携带TaTCTP和TaSnRK1开放阅读框的pGBKT7质粒单独转化酵母,发现酵母不能在SD/-LWH和SD/-LWHA培养基上生长,说明TaTCTP和TaSnRK1基因不具有自激活活性。
图 4 酵母双杂交检测TaTCTP和TaSnRK1的相互作用 Fig. 4 Yeast two-hybrid detection of TaTCTP and TaSnRK1 interaction. The transformed yeasts were cultured in SD/-LW, SD/-LWH, SD/-LWHA plate medium, photocopied yeast on the SD/-LW medium with filter paper for ONPG detection. |
图选项 |
将冻融破碎细胞的酵母经X-α-Gal显色,结果显示共同转化携带TaTCTP和TaSnRK1开放阅读框质粒的酵母印记为蓝色,说明MEL1报告基因被激活。以上结果说明TCTP与SnRK1在酵母中发生了相互作用。
2.5 TCTP与SnRK1相互作用的双分子荧光互补实验检测将携带TaTCTP和TaSnRK1开放阅读框序列的pSPYNE和pSPYCE载体单独或共同注射烟草叶片的下表皮细胞,然后在激光扫描共聚焦显微镜下对转化后的细胞进行观察并成像。结果显示,单独转化TaTCTP或TaSnRK1的烟草均不能观察到荧光,而两个基因共同转化的烟草可以观察到很强的荧光信号,并且二者发生相互作用产生的荧光信号主要分布在细胞质中(图 5)。这一结果表明,TaTCTP和TaSnRK1可以在植物细胞内发生相互作用,并且二者的相互作用主要发生在细胞质中。
图 5 双分子荧光互补实验检测TaTCTP和TaSnRK1在烟草叶片表皮细胞中的相互作用 Fig. 5 Detection of TaTCTP and TaSnRK1 interaction by bimolecular fluorescence complementarity test. Fluorescence, bright field and merged images of tobacco lower epidermis injected with pSPYNE and pSPYCE vectors was taken under laser scanning confocal microscope. Bar=20 μm. |
图选项 |
2.6 TCTP与SnRK1相互作用的Co-IP检测为了检测TCTP和SnRK1在植物细胞内的互作情况,本研究以TCTP为诱饵蛋白钓取该蛋白的相互作用蛋白,并使用Western杂交检测钓取的蛋白中是否含有SnRK1。为了避免烟草中本底表达的TCTP或SnRK1同源蛋白对本实验造成干扰,提高检测的特异性,将二者均与蛋白标签融合表达,分别产生Flag-TCTP和SnRK1-GFP融合蛋白。上述两个融合蛋白为本实验的检测组,将Flag-TCTP和GFP混合注射的蛋白样品作为对照组,以排除TCTP和GFP标签发生相互作用的可能性。在Input样品中,可以检测出Flag-TCTP和SnRK1、GFP的条带,表示3种蛋白都存在于待检测样品中(图 6)。在IP样品中,使用Flag抗体钓取的蛋白中可以用GFP抗体检测到SnRK1-GFP融合蛋白的条带,表示TCTP可以与SnRK1在植物细胞内相互作用。在对照组中未检出GFP条带(图 6),表示Flag-TCTP和SnRK1-GFP的相互作用是特异性的,并非由前者和GFP蛋白标签结合引起。
图 6 TaTCTP和TaSnRK1相互作用的Co-IP检测 Fig. 6 Detection of TaTCTP and TaSnRK1 Interaction by Co-IP experiment. Anti-Flag antibody were added into protein extracts containing either Flag-TCTP/SnRK1-GFP or Flag-TCTP/GFP. The unpurified protein extracts were examined as "Input" as quality control. Both "IP" group and "Input group" were detected using Western blotting for the existence of Flag-and GFP-tagged protein. Numbers in the left panel indicates molecule weight standard. "SnRK1", "GFP" and "TCTP" in the right panel indicate predicted band position of these protein with tags. "+" and "–" representing with or without specific protein in the total protein extracts. |
图选项 |
3 讨论高等植物进化出了多条免疫途径来抵御病原物的侵染,其中病原菌侵染诱发的超敏性反应——细胞程序性死亡(HR-PCD)是植物抵御活体寄生真菌病原的主要途径之一[32]。本课题组前期实验证明,HR-PCD是小麦抵御叶锈菌侵染的重要防卫反应[33]。目前已知有多种信号分子参与调控小麦-叶锈菌互作中HR-PCD的发生和扩展,包括Ca2+、NO和H2O2,且Ca2+信号位于H2O2和NO的上游,对HR-PCD进程起了决定性的调控作用[28]。然而,该信号分子通过何种途径调控HR-PCD,目前尚无定论。本课题组前期借助EGTA螯合胞外Ca2+,并进行转录组分析,以期发掘HR-PCD发生过程中Ca2+下游的调控基因[34],发现TCTP在Ca2+的下游发挥作用。并且,在小麦近等基因系TcLr19与叶锈菌生理小种366组成的不亲和组合中,TCTP在转录水平响应叶锈菌侵染[13]。
为了阐明TCTP在叶锈菌侵染小麦诱发的HR-PCD过程中的分子机制,本课题组前期借助TAP-MS技术对小麦接种叶锈菌后TCTP的互作蛋白进行了鉴定,并对TCTP与索马甜类蛋白(Thaumatin-like protein, TLP)间的相互作用进行了验证[35],为进一步深入研究TLP作为一类重要的病程相关蛋白成员,在小麦抵御叶锈菌侵染的防卫反应过程中的作用机制奠定了基础。蛋白质的磷酸化修饰是细胞信号转导的重要调控方式,TCTP也已被认为可参与HR-PCD发生的调控过程[36]。与TCTP互作的蛋白激酶很可能是叶锈菌诱发小麦发生HR-PCD的分子调控网络的关键节点。目前对SnRK1的研究表明,它是一个蛋白激酶复合物,其中α亚基是它的催化亚基,β和γ亚基是调节亚基[37],SnRK1参与植物生长和发育等诸多生物学过程,尤其对淀粉的降解和合成具有重要调节作用[38]。另外SnRK1也参与调控植物抵抗病原菌侵染的作用,如SnRK1可以作为孤儿蛋白TaFROG的互作因子,共同响应小麦抵御禾谷镰孢菌的侵染过程[27]。水稻SnRK1过表达植株的正常生长发育受阻,增强了水杨酸和茉莉酸途径介导的防御反应,并增加了对半活体营养型和死体营养型病原菌的抵抗力,而该基因的沉默则增加了对这些病原物的敏感性[39]。马铃薯病毒Y的HC-Pro组分可以和StubSNF1 (一种SnRK1家族成员)的调节亚基StubGAL83相互作用,并下调后者的表达,从而瓦解植株抗性,积累更多的病毒RNA[40]。因此本研究对TCTP与SnRK1互作关系的鉴定可以促进对小麦-叶锈菌互作过程中TCTP调控HR-PCD扩展分子机制的深入研究。此外,经过与Perochon等[27]研究中SnRK1序列进行比对分析,本研究涉及的SnRK1为其构成同源蛋白复合体的α亚基。
本研究使用了3种检测蛋白质相互作用的方法,即酵母双杂交、双分子荧光互补和免疫共沉淀。TaTCTP定位于细胞核和细胞质中,而TaSnRK1定位在细胞质中,并且两者均不含有跨膜结构,因此适用于GAL4转录因子酵母双杂交系统[41]。本研究在经过酵母双杂交验证二者间存在物理互作后(图 4),又通过双分子荧光互补实验进一步确证了二者的互作关系,且证明二者的互作发生在细胞质中(图 5)。双分子荧光互补实验也有若干体系,其中常用的有黄色荧光蛋白拆分系统(Spilt YFP system)和荧光素酶拆分系统(Spilt luciferase system)[42]。荧光素酶拆分系统适用于检测蛋白质间发生弱互作的检测,并且可以从活体水平上进行[43]。黄色荧光蛋白拆分系统则可以从亚细胞水平进行观察,分析蛋白质发生相互作用的位置[44]。这对蛋白质相互作用的复合物功能研究具有重要意义。本研究使用黄色荧光蛋白拆分系统的BiFC,发现TCTP和SnRK1的相互作用发生在细胞质中,这与我们之前对TCTP和TLP相互作用研究的结果相似。虽然TCTP具有在细胞核中的定位,但TCTP和SnRK1的相互作用并不发生在细胞核中,暗示二者形成的复合物可能参与叶锈菌侵染小麦诱发的HR-PCD过程中胞质内信号的传递过程。
在Co-IP实验中Rubisco大亚基通常可以非特异性地与抗体结合,在约51 kDa的位置产生干扰信号,用于IP的抗体也会混合在样品中,并被二抗检测到,抗体的重链(Heavy chain, HC)会在约55 kDa的位置产生干扰信号。上述两种来源的干扰会对SnRK1的检出造成干扰,后者的预测相对分子质量为57 kDa。因此,本研究在Co-IP实验的设计中,将SnRK1与GFP融合表达,融合蛋白的预测相对分子质量约为84 kDa (图 6),在避免其他蛋白对结果干扰的同时,利用GFP标签抗体本身的高特异性可以很好地保证检测的灵敏度。尽管本实验明确了TCTP与SnRK1的互作关系,但二者在叶锈菌侵染小麦诱发的HR-PCD过程中的具体功能仍不清楚,还需要利用遗传学手段对二者在细胞信号转导的上下游关系进行研究,明确二者发生相互作用的具体生理功能,进而完善小麦响应叶锈菌侵染诱发的HR-PCD发生的分子调控网络。
参考文献
[1] | Bommer UA, Thiele BJ. The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol, 2004, 36(3): 379-385. DOI:10.1016/S1357-2725(03)00213-9 |
[2] | Thomas G, Thomas G, Luther H. Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells. Proc Natl Acad Sci USA, 1981, 78(9): 5712-5716. DOI:10.1073/pnas.78.9.5712 |
[3] | Li F, Zhang D, Fujise K. Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem, 2001, 276(50): 47542-47549. DOI:10.1074/jbc.M108954200 |
[4] | Nielsen HV, Johnsen AH, Sanchez JC, et al. Identification of a basophil leukocyte interleukin-3-regulated protein that is identical to IgE-dependent histamine-releasing factor. Allergy, 1998, 53(7): 642-652. DOI:10.1111/j.1398-9995.1998.tb03950.x |
[5] | Kubiak JZ, Bazile F, Pascal A, et al. Temporal regulation of embryonic M-phases. Folia Histochem Cytobiol, 2008, 46(1): 5-9. DOI:10.2478/v10042-008-0001-z |
[6] | Zhang J, de Toledo SM, Pandey BN, et al. Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proc Natl Acad Sci USA, 2012, 109(16): E926-E933. DOI:10.1073/pnas.1106300109 |
[7] | Toscano-Morales R, Xoconostle-Cázares B, Cabrera-Ponce JL, et al. AtTCTP2, an Arabidopsis thaliana homolog of translationally controlled tumor protein, enhances in vitro plant regeneration. Front Plant Sci, 2015, 6: 468. DOI:10.3389/fpls.2015.00468 |
[8] | Tao JJ, Cao YR, Chen HW, et al. Tobacco translationally controlled tumor protein interacts with ethylene receptor tobacco histidine kinase1 and enhances plant growth through promotion of cell proliferation. Plant Physiol, 2015, 169(1): 96-114. DOI:10.1104/pp.15.00355 |
[9] | Wang ZQ, Li GZ, Gong QQ, et al. OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice. BMC Plant Biol, 2015, 15: 123. DOI:10.1186/s12870-015-0500-y |
[10] | Bruckner FP, Xavier ADS, Cascardo RDS, et al. Translationally controlled tumour protein (TCTP) from tomato and Nicotiana benthamiana is necessary for successful infection by a potyvirus. Mol Plant Pathol, 2017, 18(5): 672-683. DOI:10.1111/mpp.12426 |
[11] | Li G, Liu XY, Li XP, et al. Cloning of a TCTP gene in wheat and its expression induced by Erysiphe graminis. Bull Bot Res, 2010, 30(4): 441-447 (in Chinese). 李刚, 刘晓颖, 李学平, 等. 小麦TCTP基因的克隆及白粉菌诱导下的表达. 植物研究, 2010, 30(4): 441-447. |
[12] | Zheng SY, Wang YH, Xiao Y, et al. Expression analysis of TCTP gene in susceptible wheat Jing411 induced by powdery Mildew. Biotechnol Bull, 2014(9): 72-77 (in Chinese). 郑舒扬, 王艳红, 肖莹, 等. 白粉菌诱导下感病小麦京411中TCTP基因的表达分析. 生物技术通报, 2014(9): 72-77. |
[13] | Zhang LF. Construction of yeast two hybrid cDNA library and expression analysis of translationally controlled tumor protein in the early stages of TcLr19 under the stress of Puccinia triticina[D]. Baoding: Hebei Agricultural Uinversity, 2011 (in Chinese). 张立峰. TcLr19与叶锈菌互作早期的酵母双杂交cDNA文库构建及TaTCTP表达分析[D].保定: 河北农业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-11920-1011074144.htm |
[14] | Wang XM. Defense responses including oxidative burst and defense gene expression in the interaction between wheat and stripe rust and identification and functional characterization of resistance-related genes[D]. Yangling: Northwest A & F University, 2010 (in Chinese). 王晓敏.小麦与条锈菌互作过程中活性氧和防御基因的防御反应及抗病相关基因的鉴定与功能验证[D].杨凌: 西北农林科技大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10712-1011403810.htm |
[15] | Carlson M, Osmond BC, Botstein D. Mutants of yeast defective in sucrose utilization. Genetics, 1981, 98(1): 25-40. |
[16] | Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev, 2011, 25(18): 1895-1908. DOI:10.1101/gad.17420111 |
[17] | Bian MD, Li WL, Zhou LX. Research advance on SnRK family of protein kinases in higher plants. Liaoning Agric Sci, 2008(4): 32-35 (in Chinese). 边鸣镝, 李文亮, 周连霞. 高等植物SnRK蛋白激酶家族研究进展. 辽宁农业科学, 2008(4): 32-35. DOI:10.3969/j.issn.1002-1728.2008.04.010 |
[18] | Coello P, Hey SJ, Halford NG. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot, 2011, 62(3): 883-893. DOI:10.1093/jxb/erq331 |
[19] | Baena-González E. Energy signaling in the regulation of gene expression during stress. Mol Plant, 2010, 3(2): 300-313. DOI:10.1093/mp/ssp113 |
[20] | Halford NG, Hey SJ. Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J, 2009, 419(2): 247-259. DOI:10.1042/BJ20082408 |
[21] | Polge C, Thomas M. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control?. Trends Plant Sci, 2007, 12(1): 20-28. DOI:10.1016/j.tplants.2006.11.005 |
[22] | Baena-González E, Rolland F, Thevelein JM, et al. A central integrator of transcription networks in plant stress and energy signalling. Nature, 2007, 448(7156): 938-942. DOI:10.1038/nature06069 |
[23] | Ghillebert R, Swinnen E, Wen J, et al. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J, 2011, 278(21): 3978-3990. DOI:10.1111/j.1742-4658.2011.08315.x |
[24] | Mair A, Pedrotti L, Wurzinger B, et al. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. eLife, 2015, 4: e05828. DOI:10.7554/eLife.05828 |
[25] | Kim GD, Cho YH, Yoo SD. Regulatory functions of cellular energy sensor SNF1-related kinase1 for leaf senescence delay through ETHYLENE- INSENSITIVE3 repression. Sci Rep, 2017, 7(1): 3193. DOI:10.1038/s41598-017-03506-1 |
[26] | Im JH, Cho YH, Kim GD, et al. Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana. Plant Cell Environ, 2014, 37(10): 2303-2312. DOI:10.1111/pce.12375 |
[27] | Perochon A, Jianguang J, Kahla A, et al. TaFROG encodes a pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus fusarium graminearum. Plant Physiol, 2015, 169(4): 2895-2906. DOI:10.1104/pp.15.01056 |
[28] | Qiao M, Sun JW, Liu N, et al. Changes of nitric oxide and its relationship with H2O2 and Ca2+ in defense interactions between wheat and puccinia triticina. PLoS ONE, 2015, 10(7): e0132265. DOI:10.1371/journal.pone.0132265 |
[29] | Sparkes IA, Runions J, Kearns A, et al. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc, 2006, 1(4): 2019-2025. DOI:10.1038/nprot.2006.286 |
[30] | Song YH, Song NY, Shin SY, et al. Isolation of CONSTANS as a TGA4/OBF4 interacting protein. Mol Cells, 2008, 25(4): 559-565. DOI:10.1083/jcb.200803094 |
[31] | Chien CT, Bartel PL, Sternglanz R, et al. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA, 1991, 88(21): 9578-9582. DOI:10.1073/pnas.88.21.9578 |
[32] | Mur LA, Kenton P, Lloyd AJ, et al. The hypersensitive response; the centenary is upon us but how much do we know?. J Exp Bot, 2008, 59(3): 501-520. DOI:10.1093/jxb/erm239 |
[33] | Bai ZY, Wang DM, Lu BS, et al. Histological observation on programmed cell death in wheat-leaf rust fungus intreactioin. Acta Biol Experim Sin, 2003, 36(5): 353-360 (in Chinese). 白志英, 王冬梅, 路丙社, 等. 小麦与叶锈菌互作过程中细胞程序性死亡的细胞学观察. 分子细胞生物学报, 2003, 36(5): 353-360. |
[34] | Qiao M. Mechanism of signal transduction in HR induced and Ca2+ mediated gene expression analysis in Wheat and Puccinia triticina interaction[D]. Baoding: Hebei Agricultural Uinversity, 2015 (in Chinese). 乔妹.小麦-叶锈菌互作过程中HR诱发的信号转导机制及Ca2+介导的基因表达分析[D].保定: 河北农业大学, 2015. http://xueshu.baidu.com/s?wd=paperuri%3A%28a002fee636edca64c218b8abc3c932d2%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fcdmd.cnki.com.cn%2FArticle%2FCDMD-10086-1015381827.htm&ie=utf-8&sc_us=10154879246842083541 |
[35] | Ma N, Qiao JZ, Sun TJ, et al. Interaction between translationally controlled tumer protein (TCTP) and thaumatin-like protein (TLP) in wheat (Triticum aestivum). J Agric Biotechnol, 2018, 26(6): 911-919 (in Chinese). 麻楠, 乔金柱, 孙天杰, 等. 小麦翻译控制肿瘤蛋白(TCTP)与索马甜类蛋白(TLP)的相互作用. 农业生物技术学报, 2018, 26(6): 911-919. |
[36] | Hoepflinger MC, Reitsamer J, Geretschlaeger AM, et al. The effect of translationally controlled tumour protein (TCTP) on programmed cell death in plants. BMC Plant Biol, 2013, 13: 135. DOI:10.1186/1471-2229-13-135 |
[37] | Zúniga-Sánchez E, Rodríguez-Sotres R, Coello P, et al. Effect of catalytic subunit phosphorylation on the properties of SnRK1 from Phaseolus vulgaris embryos. Physiol Plant, 2018, 165(3): 632-643. DOI:10.1111/ppl.12761 |
[38] | Ruiz-Gayosso A, Rodríguez-Sotres R, Martínez-Barajas E, et al. A role for the carbohydrate-binding module (CBM) in regulatory SnRK1 subunits: the effect of maltose on SnRK1 activity. Plant J, 2018, 96(1): 163-175. DOI:10.1111/tpj |
[39] | Filipe O, de Vleesschauwer D, Haeck A, et al. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Sci Rep, 2018, 8(1): 3864. DOI:10.1038/s41598-018-22101-6 |
[40] | Beczner F, Antal F, Kopp A, et al. The StubGAL83 subunit of the StubSNF1 complex interacts with HC-Pro of Potato virus Y and influences virus multiplication in potato. South Afr J Bot, 2017, 113: 370-376. DOI:10.1016/j.sajb.2017.09.015 |
[41] | Ferro E, Trabalzini L. The yeast two-hybrid and related methods as powerful tools to study plant cell signalling. Plant Mol Biol, 2013, 83(4/5): 287-301. DOI:10.1007/s11103-013-0094-4 |
[42] | Fan JY, Cui ZQ, Zhang XE. Bimolecular fluorescence complementation technique. Chin J Biochem Mol Biol, 2008, 24(8): 767-774 (in Chinese). 樊晋宇, 崔宗强, 张先恩. 双分子荧光互补技术. 中国生物化学与分子生物学报, 2008, 24(8): 767-774. DOI:10.3969/j.issn.1007-7626.2008.08.013 |
[43] | Kaihara A, Kawai Y, Sato M, et al. Locating a protein-protein interaction in living cells via split Renilla luciferase complementation. Anal Chem, 2003, 75(16): 4176-4181. DOI:10.1021/ac0300800 |
[44] | Walter M, Chaban C, Schütze K, et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J, 2004, 40(3): 428-438. DOI:10.1111/j.1365-313X.2004.02219.x |