1. 龙岩学院 生命科学学院,福建 龙岩 364012;
2. 福建省预防兽医学与兽医生物技术重点实验室,福建 龙岩 364012
收稿日期:2020-11-09;接收日期:2021-03-08
基金项目:福建省科技重大专项(No. 2019NZ09005),中央引导地方科技发展专项项目(No. 2019L3011),福建省自然科学基金(Nos. 2018J01461, 2019J01803),大学生创新创业训练项目(No. 202011312054) 资助
摘要:为研究猪圆环病毒2型(Porcine circovirus type 2,PCV2) 感染的猪肺泡巨噬细胞(Porcine alveolar macrophages,PAMs) 分泌Ⅰ型干扰素信号通路,以PCV2病毒感染PAMs为研究对象,采用酶联免疫吸附测定(Enzyme-linked immunosorbent assay,ELISA)、实时荧光定量PCR和Western blotting,分析PCV2感染对PAMsⅠ型干扰素的诱导、cGAS/STING信号通路相关基因mRNA和蛋白表达的影响,并应用靶向cGAS和STING特异性siRNA、抑制剂BX795和BAY 11-7082,解析cGAS、STING、TBK1和NF-κB/P65在PAMs生成Ⅰ型干扰素中的作用。结果显示,PAMs感染PCV2病毒48 h后Ⅰ型干扰素的表达量显著升高(P<0.05),cGAS mRNA的表达量在感染48 h和72 h后显著升高(P<0.01),STING mRNA表达量在PCV2感染72 h后显著上升(P<0.01),TBK1 mRNA、IRF3 mRNA感染48 h后显著升高(P<0.01)。PCV2能够显著升高PAMs胞浆STING、TBK1和IRF3蛋白含量,降低胞浆NF-κB/p65的含量,促进NF-κB/p65和IRF3入核。敲低PAMs中cGAS或STING表达水平后,PCV2感染PAMs 48 h后,Ⅰ型干扰素的表达水平显著下降(P<0.01);BAX795抑制TBK1后,PCV2感染PAMs 48 hⅠ型干扰素的表达水平显著下降(P<0.01),BAY 11-7082抑制NF-κB/P65表达后,PCV2感染PAMs 48 h Ⅰ型干扰素的表达量与PCV2组相比无显著性差异(P>0.05)。结果表明,PAMs感染PCV2后通过cGAS/STING/TBK1/IRF3信号通路诱导Ⅰ型干扰素分泌。
关键词:猪圆环病毒2型猪肺泡巨噬细胞Ⅰ型干扰素先天性免疫信号通路
cGAS/STING signaling pathways induces the secretion of type Ⅰ interferon in porcine alveolar macrophages infected with porcine circovirus type 2
Hongbo Chen1, Feng Li1, Wenyan Lai1, Yuhao Fang1, Mingyong Jiang1, Dianning Duan1, Xiaoyan Yang1,2
1. College of Life Sciences, Longyan University, Longyan 364012, Fujian, China;
2. Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, Fujian, China
Received: November 9, 2020; Accepted: March 8, 2021
Supported by: Major Project of Science and Technology Program of Fujian Province, China (No. 2019NZ09005), Special Projects for Local Science and Technology Development Guided by the Central Government, China (No. 2019L3011), Natural Science Foundation of Fujian Province, China (Nos. 2018J01461, 2019J01803), Innovation and Entrepreneurship Training Program for College Students, China (No. 202011312054)
Corresponding author: Xiaoyan Yang. Tel: +86-597-2797255; E-mail: lyyxy1988@126.com.
Abstract: In order to study the signal pathway secreting type Ⅰ interferon in porcine alveolar macrophages (PAMs) infected with porcine circovirus type 2 (PCV2), the protein and the mRNA expression levels of cGAS/STING pathways were analyzed by ELISA, Western blotting and quantitative reverse transcriptase PCR in PAMs infected with PCV2. In addition, the roles of cGAS, STING, TBK1 and NF-κB/P65 in the generation of type Ⅰ interferon (IFN-I) from PAMs were analyzed by using the cGAS and STING specific siRNA, inhibitors BX795 and BAY 11-7082. The results showed that the expression levels of IFN-I increased significantly at 48 h after infection with PCV2 (P < 0.05), the mRNA expression levels of cGAS increased significantly at 48 h and 72 h after infection (P < 0.01), the mRNA expression levels of STING increased significantly at 72 h after infection (P < 0.01), and the mRNA expression levels of TBK1 and IRF3 increased at 48 h after infection (P < 0.01). The protein expression levels of STING, TBK1 and IRF3 in PAMs infected with PCV2 were increased, the content of NF-κB/p65 was decreased, and the nuclear entry of NF-κB/p65 and IRF3 was promoted. After knocking down cGAS or STING expression by siRNA, the expression level of IFN-I was significantly decreased after PCV2 infection for 48 h (P < 0.01). BX795 and BAY 11-7082 inhibitors were used to inhibit the expression of IRF3 and NF-κB, the concentration of IFN-I in BX795-treated group was significantly reduced than that of the PCV2 group (P < 0.01), while no significant difference was observed between the BAY 11-7028 group and the PCV2 group. The results showed that PAMs infected with PCV2 induced IFN-I secretion through the cGAS/STING/TBK1/IRF3 signaling pathway.
Keywords: porcine circovirus type 2porcine alveolar macrophagestype Ⅰ interferoninnate immune signaling pathway
猪圆环病毒2型(Porcine circovirus type 2,PCV2) 是无囊膜的单股环状负链DNA病毒,自1997年发现以来,已在世界各地广泛传播[1-2]。PCV2入侵猪机体宿主细胞后,如猪肺泡巨噬细胞(Porcine alveolar macrophages,PAMs),宿主细胞能通过模式识别受体(Pattern recognition receptors,PRRs) 识别入侵病毒,并诱导多种先天性免疫以及抗病毒基因、干扰素、趋化因子和促炎细胞因子的产生,这些产物协同抑制并控制病毒感染[3-5]。胞质DNA传感器cGAS (cGMP-ATP synthase,cGAS) 能够识别DNA病毒和逆转录病毒的胞内DNA,与STING (Stimulator of interferon genes,STING) 结合并激活STING,诱导干扰素(Interferon,IFN) 产生,引起机体抗病毒免疫反应[6-7],那么PCV2是否能够通过此信号通路诱导PAMs免疫应答及Ⅰ型干扰素产生,到目前为止未见报道。
天然免疫是动物机体阻止病原体入侵并抑制其在体内复制的第一道屏障,天然免疫会利用PRRs识别一些非自我、病原相关分子模式(Pathogen associated molecule patterns,PAMPs),在识别病原体后,机体会产生多种抗病毒基因、IFNs、趋化因子和促炎因子等,这些产物协同抑制并控制病毒感染,之后激活自身免疫系统来清除对机体产生伤害的物质[8-10]。干扰素是动物机体分泌的一种细胞因子,具有抗病毒、抗肿瘤和免疫调节作用,与机体内的细胞受体结合后,一方面诱导组织细胞分泌抗病毒蛋白,激活2′–5′寡聚腺苷酸合成酶(2′–5′ oligoadenylates synthesis,OAS)、磷酸二酯酶、蛋白激酶,促使病毒mRNA降解,抑制病毒蛋白翻译,导致病毒蛋白合成受阻,进而抑制病毒复制;另一方面,通过促进细胞毒性T淋巴细胞(Cytotoxic T lymphocyte,CTL)增殖、激活自然杀伤细胞(Natural killer cell,NK)杀伤功能、增强巨噬细胞吞噬功能,增强免疫清除能力,进而发挥清除病毒的作用。cGAS是识别DNA病毒的最主要的模式识别受体,STING是DNA模式识别受体共同经过的一个跨膜接头蛋白。cGAS能感知细胞质中的外源性DNA时,会催化GTP和ATP之间发生化学反应,并生成环鸟腺苷酸(cyclic GMP-AMP,cGAMP),cGAMP作为先天免疫系统的信使,结合并激活STING,STING被激活后随TBK1从内质网一起转位至核周围高尔基体,TBK1激酶磷酸化并激活干扰素调节因子(IFN regulatory factor,IRFs) 和NF-κB等基因,后者诱导Ⅰ型干扰素和其他免疫应答反应[11-12]。
试验以PAMs为模型,采用siRNA干扰技术抑制cGAS和STING基因表达,或抑制cGAS/STING信号通路下游分子TBK1或NF-κB,检测IFN-α和IFN-β表达量,研究cGAS/STING在PCV2感染PAMs后生成Ⅰ型干扰素中的作用,为研究PCV2与宿主模式识别受体相互作用模式及其发病机制提供理论基础。
1 材料与方法1.1 病毒及材料PCV2-SH (AY686763) 病毒滴度为1×10–5.5 TCID50/mL,由龙岩学院生命科学学院保存;Total RNA Extraction Reagent、HiScript Ⅲ RT SuperMix和SYBR Green Master Mix购自南京诺唯赞生物科技股份有限公司;兔抗NF-кB/p65多克隆抗体、兔抗STING多克隆抗体、兔抗TBK1多克隆抗体和兔抗IRF3多克隆抗体购自北京博奥森公司;兔抗β-actin单克隆抗体、兔抗Histone H3多克隆抗体、细胞核蛋白与细胞质蛋白抽提试剂盒和NF-κB抑制剂BAY 11-7082购自上海碧云天生物公司;LipofectamineTM 3000 Transfection Reagent购自InvitrogenTM;TBK1抑制剂BX795购自InvivoGen;猪干扰素-α (Swine IFN-α) 和猪干扰素-β (Swine IFN-β) 的ELISA试剂盒购自上海西唐生物科技股份有限公司;根据文献[13]设计sicGAS和siSTING序列,由生工生物工程(上海) 股份有限公司合成。
1.2 猪肺泡巨噬细胞的制备3头28日龄血清PCV2和PRRSV抗体阴性,PCV2、PRRSV、PRV和CSFV抗原检测阴性的断奶仔猪,自由采食饮水饲养5 d消除机体应激反应,根据文献[14]采用肺泡灌洗法无菌分离收集猪肺泡巨噬细胞(PAMs),用10% FBS的RPMI-1640培养液调整细胞浓度至1×106个/mL,备用。
1.3 试验设计将PAMs贴壁24 h后分成空白对照组和PCV2组,每组设置3个重复,PCV2组接种PCV2 (MOI=1),感染后6、12、24、48、72 h收集细胞及上清液。将PAMs分成PCV2+siNC组、PCV2+sicGAS组和PCV2+siSTING组,每组设置3个重复,PCV2+sicGAS组和PCV2+siSTING组按照转染试剂说明书操作如下:用125 μL不含血清培养基Opti-MEM稀释5 μL的20 μmol/L siRNA,轻轻混匀;用125 μL不含血清培养基Opti-MEM稀释5 μL的Lipofectamine 3000转染试剂,轻轻混匀;将两管混匀,室温孵育10–15 min;PAMs弃培养基,PBS洗2遍,换成含1%血清的维持液,将siRNA-Lipo3000混合液加入细胞孔中,轻轻混匀,转染24 h后接种PCV2 (MOI=1),48 h后收集细胞及上清液。将PAMs分成PCV2组、PCV2+ BX795组、PCV2+BAY 11-7082组,每组设置3个重复,PCV2组处理同上,PCV2+BX795组和PCV2+BAY 11-7082组分别用0.5 μmol BX795、5 μmol BAY 11-7082处理1 h,然后接种PCV2 (MOI=1),48 h后收集细胞及上清液。
1.4 ELISA根据试剂盒说明书,采用ELISA法测定培养上清中IFN-α和IFN-β的水平,根据标准曲线将每个样品的OD值转换为相应的浓度,并用平均浓度(pg/mL) 表示。
1.5 qPCR使用Total RNA Extraction Reagent提取PAMs总RNA,HiScript Ⅲ RT SuperMix逆转录试剂盒操作步骤简述如下:RNA 1 μg、4×gDNA wiper mix 4 μL、ddH2O至16 μL,42 ℃ 2 min,加入5×HiScript Ⅲ qRT SuperMix 4 μL,37 ℃ 15 min,85 ℃ 5 s反转录成cDNA,qPCR反应体系由2 μL cDNA、10 μL SYBR Green、0.6 μL上游引物、0.6 μL下游引物和6.8 μL双蒸馏水组成,以β-actin为内参,检测mRNA变化,引物序列见表 1。qPCR数据分析根据Ct值计算目的基因的相对表达量(2–ΔΔCt法),其中ΔΔCt=[实验组(Ct目的基因–Ct内参基因)]–[对照组(Ct目的基因–Ct内参基因)]。
1.6 Western blotting取48 h空白对照组和PCV2组PAMs,使用细胞核蛋白提取试剂盒提取淋巴细胞胞浆和胞核蛋白,具体步骤参考试剂盒说明书,BCA法测定样品蛋白浓度,?80 ℃保存备用。细胞质或细胞核蛋白样品与5×SDS变性缓冲液混合煮沸变性5 min,10%聚丙烯酰胺凝胶电泳分离,转印到0.22 μm PVDF膜,在37 ℃温箱中5%脱脂乳封闭2 h后,在4 ℃冰箱孵育一抗(1︰1 000稀释) 过夜,室温孵育二抗(1︰10 000稀释) 2 h,加ECL显影液上机检测,采用Quantity one软件对蛋白条带灰度值分析。
1.7 数据分析所有数据均以平均值±标准差(x±s) 表示,统计采用SPSS20.0软件,用单因素方差分析和多重比较法分析各组之间的差异。*P < 0.05表示差异显著,**P < 0.01表示差异极显著,ns表示无显著差异。
2 结果与分析2.1 PAMs感染PCV2后上清液中IFN-α和IFN-β含量的变化PAMs上清液中IFN-α和IFN-β含量变化如图 1所示,PCV2感染PAMs后IFN-α分泌增强。感染后48 h,PCV2组与空白对照组相比IFN-α含量极显著升高(P < 0.01),随着时间延长,IFN-α含量出现下降趋势,但仍显著高于对照组(P < 0.05) (图 1A)。感染后48 h和72 h,PCV2组与空白对照组相比IFN-β含量极显著升高(P < 0.05) (图 1B)。
图 1 PCV2感染后不同时间PAMs细胞培养上清液中IFN-α和IFN-β的浓度 Fig. 1 The levels of IFN-α (A) and IFN-β (B) in cell culture supernatant infected with PCV2. |
图选项 |
表 1 基因的引物序列Table 1 Primer sequences
Gene | Primer sequence (5′–3′) | Size (bp) |
cGAS | Sense: TACCCAAGCATGCCAAGGAAGGAAGT | 365 |
Anti-sense: GGCCAGTTGTTCTGTCTTGAGGCAC | ||
STING | Sense: CTCATTGTCTACCAGGAACCC | 141 |
Anti-sense: GGACAGCGTGGAGGAAGTG | ||
TBK1 | Sense: CCGTCATTAGTGCGTCAGTTCT | 229 |
Anti-sense: ACAGATTTTGGTGCAGCCAG | ||
IRF3 | Sense: TGGGCAGGTCGGGCTTAT | 83 |
Anti-sense: GCAGGAGGACTTCGGCATCT | ||
β-actin | Sense: CTCCATCATGAAGTGCGACGT | 114 |
Anti-sense: GTGATCTCCTTCTGCATCCTGTC |
表选项
2.2 PAMs感染PCV2后模式识别受体和接头蛋白mRNA变化PAMs感染PCV2后cGAS/STING通路相关mRNA变化如图 2所示,DNA模式识别受体cGAS的mRNA表达量在24 h、48 h、72 h都极显著升高(P < 0.01) (图 2A)。模式识别受体下游信号通路中的接头蛋白STING的mRNA表达量在24 h升高,但无显著差异(P > 0.05),72 h极显著升高(P < 0.01) (图 2B)。信号通路下游分子IRF3和TBK1的mRNA表达量在48 h和72 h显著升高(P < 0.05) 或呈极显著升高(P < 0.01) (图 2C、D)。
图 2 PCV2感染后PAMs细胞中mRNA变化 Fig. 2 The mRNA levels of cGAS (A), STING (B), TBK1 (C), and IRF3 (D) in PAMs infected with PCV2. |
图选项 |
2.3 PAMs感染PCV2后对细胞质中STING、TBK1、NF-κB/P65和IRF3表达的影响PAMs感染PCV2 48 h后细胞浆中STING、TBK1、NF-κB/P65和IRF3表达如图 3A、B所示,与48 h对照组相比,PCV2感染组中STING和IRF3蛋白水平显著升高(P < 0.05),TBK1蛋白水平极显著升高(P < 0.01),NF-κB/P65蛋白水平极显著降低(P < 0.01)。表明PAMs感染PCV2后激活cGAS-STING信号通路,诱导细胞质中信号通路分子STING、TBK1和IRF3表达,PCV2降低PAMs细胞质中NF-κB/P65含量,促进其入核。
图 3 PCV2感染后PAMs细胞胞浆蛋白的变化 Fig. 3 Changes of cytoplasmic proteins in PAMS infected with PCV2. (A) The levels of STING, TBK1, IRF3 and NF-κB/P65 in PAMs cytoplasm were examined by Western blotting. (B) Quantity one software was used to analyze immunoblots. |
图选项 |
2.4 PAMs感染PCV2后对细胞核中IRF3和NF-κB表达的影响PAMs感染PCV2 48 h后细胞核中NF-κB/P65和IRF3表达如图 4所示,与48 h对照组相比,PCV2感染组IRF3蛋白水平显著升高(P < 0.05),NF-κB/P65蛋白水平极显著升高(P < 0.01),表明PAMs感染PCV2后促进IRF3和NF-κB/P65入核。
图 4 PCV2感染后PAMs细胞核蛋白的变化 Fig. 4 Changes of nuclear proteins in PAMS infected with PCV2. (A) The levels of IRF3 and NF-κB/P65 in PAMs nucleus were examined by Western blotting. (B) Quantity one software was used to analyze immunoblots. |
图选项 |
2.5 sicGAS和siSTING序列验证为验证cGAS和STING在PAMs产生Ⅰ型干扰素中的作用,合成sicGAS和siSTING后用sicGAS、siSTING和siNC转染细胞,48 h后收集细胞,结果如图 5所示,与siNC组相比,sicGAS和siSTING均能够显著下调相应的mRNA水平(P < 0.01),基因的沉默率分别为42%和34%。
图 5 转染siRNA后PAMs细胞中cGAS和STING的表达 Fig. 5 The expression levels of cGAS and STING in PAMs cells after the siRNA transfection. |
图选项 |
2.6 sicGAS和siSTING处理对PAMs分泌Ⅰ型干扰素的影响用sicGAS、siSTING或siNC转染细胞,24 h后接种PCV2,感染后48 h收集细胞上清液,检测cGAS和STING表达下降后,Ⅰ型干扰素表达结果如图 6所示,PAMs的IFN-α表达水平与转染siNC相比,转染sicGAS和转染siSTING再接种PCV2 48 h后均极显著降低(P < 0.01);PAMs的IFN-β表达水平与转染siNC相比,转染sicGAS和转染siSTING再接种PCV2 48 h后显著降低(P < 0.05) 或极显著降低(P < 0.01)。
图 6 siRNA处理对PAMs细胞感染PCV2后生成Ⅰ型干扰素的影响 Fig. 6 The effect of different siRNA on the levels of type Ⅰ IFN in PAMs cells infected with PCV2. |
图选项 |
2.7 TBK1和NF-κB抑制剂处理对PAMs分泌Ⅰ型干扰素的影响用BX795或BAY 11-7082处理细胞1 h后接种PCV2,检测TBK1和NF-κB抑制表达后,Ⅰ型干扰素表达结果如图 7所示,与PCV2组相比,PCV2+BX795组IFN-α的表达水平极显著降低(P < 0.01),PCV2+BAY 11-7082组IFN-α的表达水平有降低趋势,但无显著差异;PCV2+BX795组和PCV2+BAY 11-7082组IFN-α的表达水平有显著差异(P < 0.05);与PCV2组相比,PCV2+BX795组IFN-β的表达水平显著降低(P < 0.05),PCV2+BAY 11-7082组IFN-β的表达水平有降低趋势,但无显著差异;PCV2+BX795组和PCV2+BAY 11-7082组IFN-β的表达水平无显著差异(P>0.05)。
图 7 抑制剂处理对PAMs细胞感染PCV2后生成Ⅰ型干扰素的影响 Fig. 7 The effect of different inhibitor on the levels of IFN-I in PAMs cells infected with PCV2. |
图选项 |
3 讨论先天性免疫又称为固有免疫,指动物机体先天具有的正常的生理防御功能,由免疫器官、免疫细胞和免疫分子组成,对各种入侵的病原微生物能快速反应,同时在特异性免疫的启动和效应过程也起着重要作用[5]。巨噬细胞作为一种免疫细胞在先天性免疫中起重要作用,具有趋化性定向运动、吞噬作用、抗原呈递作用和分泌作用,例如溶菌酶、补体、干扰素等,其中干扰素主要以其抗病毒活性著称[15]。干扰素根据其氨基酸序列不同,分为3种类型,分别是Ⅰ型、Ⅱ型和Ⅲ型干扰素,其中Ⅰ型干扰素又包括IFN-α和IFN-β,主要由病毒感染直接引起[4]。机体受到病原微生物刺激后干扰素与其受体(异二聚体IFNAR1和IFNAR2) 结合,激活STAT转录因子的转录,从而激活干扰素刺激基因(Interferon- stimulated genes,ISGs) 翻译。ISGs编码的蛋白质(例如MX1、OAS和ISG-15) 可以在周围细胞中建立抗病毒状态,从而限制病毒的复制和传播[16]。PAMs是猪机体抵抗多种病原的天然屏障,是PCV2的靶细胞[17]。天然免疫细胞细胞表面或细胞质内存在多种抗原识别受体即PRRs,参与病原体或损伤分子识别和早期应答阶段的经典信号通路包括Toll样受体(Toll-like receptors,TLR)信号通路、C型凝集素受体(CLR) 信号通路、炎症小体及细胞焦亡信号通路、RIG-Ⅰ-MAVS信号通路和cGAS-STING信号通路,cGAS-STING信号通路主要识别病毒DNA[10]。前期研究报道发现PCV2感染猪后能引起血清中Ⅰ型干扰素表达升高[2];PAMs感染PCV2后激活TLRs-MyD88依赖的通路,激活RIG-Ⅰ/MDA-5/MAVS/IRF3信号通路诱导Ⅰ型干扰素表达[18];PAMs感染PCV2后可通过MyD88-IRFs信号途径上调IFN的表达[20]。cGAS/STING在DNA病毒侵染动物体后产生干扰素过程中起重要作用,然而其在PAMs感染PCV2后生成干扰素中的作用机制尚未见报道,试验结果发现,原代PAMs在体外接受PCV2感染48 h后Ⅰ型干扰素表达显著升高,这与其他研究报告一致[19],试验结果表明PAMs在体外可分泌IFN-α和IFN-β,并且主要在感染后期大量表达。
cGAS作为DNA传感器,其在识别各种外源DNAs中具有重要作用,很多DNA病毒能够通过cGAS被识别并启动cGAS-cGAMP-STING介导的抗病毒反应,包括疱疹病毒[20]、非洲猪瘟病毒[21]和痘病毒[22]等。cGAS酶感知到本不应出现在细胞质的DNA时,胞质DNA与cGAS结合后传递至第二信使环磷酸鸟苷-磷酸腺苷(Cyclin GMP-AMP,cGAMP),cGAMP作为第二信使直接活化STING,二聚化的STING与cGAMP结合,构象发生变化,通过自噬小体经内质网、高尔基体再到内体,期间被泛素化后募集TBK1蛋白,磷酸化并激活干扰素调节因子IRF3和NF-κB,后者激活后入核并诱导Ⅰ型干扰素和其他免疫应答基因表达。STING全称干扰素基因刺激蛋白,是一种介导胞内DNA诱导固有免疫应答的重要接头蛋白,在感知dsDNA的反应中扮演了中心轴的作用,是Ⅰ型干扰素的强刺激基因[23]。STING二聚化后,从内质网经过高尔基体转移到核外周小体上,SCAP从内质网转移聚集到核外周小体,并将转录因子IRF3招募到STING信号复合体上,TBK1也会同时聚集到核外周小体上并被激活,激活后的TBK1磷酸化IRF3,随后IRF3发生二聚化,入核起始靶基因的表达;去掉STING C-末端的9个氨基酸,STING就失去活力,去掉这些氨基酸后STING不能与TBK1共定位,STING突变后不能结合TBK1,且这些突变影响干扰素的表达[3, 12, 24]。STING也能激活激酶IKK,使转录因子NF-κB的抑制剂IκB家族磷酸化,磷酸化的IκB蛋白能通过蛋白酶体途径被降解,释放NF-κB进入细胞核,诱导干扰素和炎性细胞因子如TNF、IL-1β和IL-6的表达[11, 25]。qPCR试验结果显示,PAMs感染PCV2后,cGAS/STING信号通路中模式识别受体cGAS被激活,mRNA表达量显著升高(P < 0.01),接头蛋白STING的mRNA表达量显著升高(P < 0.01),下游信号分子TBK1和IRF3的mRNA表达量也显著升高(P < 0.01)。Western blotting结果显示PAMs感染PCV2后,细胞质中STING、TBK1和IRF3表达显著升高,而NF-κB/P65含量降低,细胞核中NF-κB/P65和IRF3表达量显著升高。两部分实验结果表明,PAMs感染PCV2后能激活cGAS/STING信号通路,但通过何种下游信号分子——NF-κB/P65或IRF3来诱导干扰素表达需进一步研究。为验证cGAS和STING在PAMs产生Ⅰ型干扰素中的作用,应用siRNA技术,设计特异性sicGAS和siSTING靶向cGAS和STING,结果显示抑制cGAS或STING表达后,Ⅰ型干扰素的表达极显著降低(P < 0.01),特别是STING被抑制后IFN-α和IFN-β均极显著降低,表明STING作为识别DNA病毒感染的接头蛋白在Ⅰ型干扰素产生中起重要作用。为进一步验证下游分子的变化,分别使用TBK1和NF-κB的抑制剂BX795[26]和BAY 11-7082[27]处理PAMs后接种PCV2,结果显示TBK1抑制表达后IFN-α和IFN-β均极显著降低(P < 0.01或P < 0.05),而NF-κB抑制表达后IFN-α和IFN-β表达量与对照相比无显著差异,试验结果表明,PAMs感染PCV2后生成的Ⅰ型干扰素与cGAS/STING/TBK1/IRF3信号通路关系密切。虽然PCV2感染PAMs后促进NF-κB入核,但与Ⅰ型干扰素表达无关。研究表明,PAMs感染PCV2后多种TLRs被激活,NF-κB/P65入核增多,IL-1β、IL-6和IL-10等炎症细胞因子分泌增加,NF-κB被激活后改变机体急性期蛋白、病毒复制和多种白细胞介素的表达[28],而与干扰素表达无明显作用。本实验对cGAS/STING/TBK1/IRF3信号通路在PCV2感染PAMs后Ⅰ型干扰素表达中的作用进行探究,为揭示PCV2感染和机体先天性免疫的关系奠定基础。
参考文献
[1] | Koinig HC, Talker SC, Stadler M, et al. PCV2 vaccination induces IFN-γ/TNF-α co-producing T cells with a potential role in protection. Vet Res, 2015, 46: 20. DOI:10.1186/s13567-015-0157-4 |
[2] | Fort M, Fernandes LT, Nofrarias M, et al. Development of cell-mediated immunity to porcine circovirus type 2 (PCV2) in caesarean-derived, colostrum-deprived piglets. Vet Immunol Immunopathol, 2009, 129(1/2): 101-107. |
[3] | Zhao BY, Du FL, Xu PB, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature, 2019, 569(7758): 718-722. DOI:10.1038/s41586-019-1228-x |
[4] | Schoggins JW, MacDuff DA, Imanaka N, et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 2014, 505(7485): 691-695. DOI:10.1038/nature12862 |
[5] | Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4): 783-801. DOI:10.1016/j.cell.2006.02.015 |
[6] | Suschak JJ, Wang SX, Fitzgerald KA, et al. A cGAS-independent STING/IRF7 pathway mediates the immunogenicity of DNA vaccines. J Immunol, 2016, 196(1): 310-316. DOI:10.4049/jimmunol.1501836 |
[7] | Prabakaran T, Bodda C, Krapp C, et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J, 2018, 37(8): e97858. |
[8] | 孙文香, 蒋争凡. 病毒感染引发天然免疫细胞信号转导研究进展. 中国细胞生物学学报, 2013, 35(5): 563-573. Sun WX, Jiang ZF. Innate immune detection and activation to viral infection. Chin J Cell Biol, 2013, 35(5): 563-573 (in Chinese). |
[9] | Cheng WY, He XB, Jia HJ, et al. The cGAS-STING signaling pathway is required for the innate immune response against ectromelia virus. Front Immunol, 2018, 9: 1297-1310. DOI:10.3389/fimmu.2018.01297 |
[10] | Du MJ, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 2018, 361(6403): 704-709. DOI:10.1126/science.aat1022 |
[11] | Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal, 2012, 5(214): ra20. |
[12] | Chen W, Li SL, Yu HS, et al. ER adaptor SCAP translocates and recruits IRF3 to perinuclear microsome induced by cytosolic microbial DNAs. PLoS Pathog, 2016, 12(2): e1005462. DOI:10.1371/journal.ppat.1005462 |
[13] | Huang B, Zhang LL, Lu MQ, et al. PCV2 infection activates the cGAS/STING signaling pathway to promote IFN-β production and viral replication in PK-15 cells. Vet Microbiol, 2018, 227: 34-40. DOI:10.1016/j.vetmic.2018.10.027 |
[14] | Liu Q, Bai J, Lu Q, et al. Two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach revealed first proteome profiles of pulmonary alveolar macrophages infected with porcine circovirus type 2. J Proteomics, 2013, 79: 72-86. DOI:10.1016/j.jprot.2012.11.024 |
[15] | Li J, Wada S, Weaver LK, et al. Myeloid folliculin balances mTOR activation to maintain innate immunity homeostasis. JCI Insight, 2019, 4(6): e126939. |
[16] | Cerboni S, Jeremiah N, Gentili M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med, 2017, 214(6): 1769-1785. DOI:10.1084/jem.20161674 |
[17] | Segalés J, Rosell C, Domingo M. Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol, 2004, 98(2): 137-149. DOI:10.1016/j.vetmic.2003.10.006 |
[18] | 赵其岭, 张新晨, 陈萌萌, 等. PCV2人工感染对猪肺泡巨噬细胞干扰素信号通路的调控研究. 畜牧兽医学报, 2016, 47(3): 587-594. Zhao QL, Zhang XC, Chen MM, et al. Regulation of interferon signaling pathway in alveolar macrophages of piglets infected with procine circovirus type 2. Acta Vet Zootechn Sin, 2016, 47(3): 587-594 (in Chinese). |
[19] | Chen MM, Han JY, Zhang YQ, et al. Porcine circovirus type 2 induces type Ⅰ interferon production via MyD88-IKKα-IRFs signaling rather than NF-κB in porcine alveolar macrophages in vitro. Res Vet Sci, 2016, 104: 188-194. DOI:10.1016/j.rvsc.2015.12.016 |
[20] | Jia MT, Qin DH, Zhao CY, et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol, 2020, 21(7): 727-735. DOI:10.1038/s41590-020-0699-0 |
[21] | García-Belmonte R, Pérez-Nú?ez D, Pittau M, et al. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. J Virol, 2019, 93(12): e02298-18. |
[22] | Meade N, King M, Munger J, et al. mTOR dysregulation by vaccinia virus F17 controls multiple processes with varying roles in infection. J Virol, 2019, 93(15): e00784-19. |
[23] | Ahn J, Xia TL, Capote AR, et al. Extrinsic phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Cancer Cell, 2018, 33(5): 862-873. DOI:10.1016/j.ccell.2018.03.027 |
[24] | Kumar V. A STING to inflammation and autoimmunity. J Leukocyte Biol, 2019, 106(1): 171-185. DOI:10.1002/JLB.4MIR1018-397RR |
[25] | Dobbs N, Burnaevskiy N, Chen DD, et al. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe, 2015, 18(2): 157-168. DOI:10.1016/j.chom.2015.07.001 |
[26] | Clark K, Plater L, Peggie M, et al. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IκB kinase ?: a distinct upstream kinase mediates ser-172 phosphorylation and activation. J Biol Chem, 2009, 284(21): 14136-14146. DOI:10.1074/jbc.M109.000414 |
[27] | El-Khattouti A, Selimovic D, Hannig M, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med, 2016, 20(2): 226-286. |
[28] | Han JY, Zhang SX, Zhang YQ, et al. Porcine circovirus type 2 increases interleukin-1beta and interleukin-10 production via the MyD88-NF-kappa B signaling pathway in porcine alveolar macrophages in vitro. J Vet Sci, 2017, 18(2): 183-191. DOI:10.4142/jvs.2017.18.2.183 |