沈丽丽,王 丹,徐 珂
AuthorsHTML:沈丽丽,王 丹,徐 珂
AuthorsListE:Shen Lili,Wang Dan,Xu Ke
AuthorsHTMLE:Shen Lili,Wang Dan,Xu Ke
Unit:天津大学电气自动化与信息工程学院,天津 300072
Unit_EngLish:School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
Abstract_Chinese:近年来,深度学习在无参考图像质量评价领域的应用获得了广泛的关注.然而,复杂的双目视觉机制和立 体图像的多维特性使得立体图像的质量评估更具有挑战性.基于人类视觉皮层的交互作用,提出一个多级表示网络 用于无参考立体图像质量评价.为了克服缺乏具有主观质量分数的大规模训练数据问题,将图像的主观平均意见分 数分配给图像中的所有小图像块.同时,考虑到大量来自同质区域的图像块会混淆网络训练和质量分数预测过程, 采用基于方差的阈值指标来过滤部分同质图像块.多级表示网络由初级子网和高级子网两部分组成,在初级子网 中,将视差图加入网络构成三通道卷积神经网络,分别提取并交互立体视图和视差图的初级特征;在初级子网的输 出端,将特征分别级联得到基于视差的交互式双目特征和无视差交互的单眼特征;高级子网采用二通道卷积神经网 络,进一步提取高级融合特征信息,更好地模拟人类视觉系统的信息处理机制.最终,所提出的多级表示网络不仅 提取了立体图像的单眼特征,还提取了基于视差/深度信息的双目特征.在公开的 LIVE 3D Phase Ⅰ和 LIVE 3D Phase Ⅱ数据库上进行测试,实验结果表明该网络在对称和非对称立体图像数据库上较其他方法均取得了较好的结 果,能够与人类的主观感知保持良好的一致性.
Abstract_English:No-reference stereoscopic image quality assessment by deep learning has attracted lot of attention. However,complex binocular vision mechanisms and multi-dimensional characteristics of stereoscopic images make the assessment more challenging. A multi-level representation network is proposed to solve these problems based on the interactions in the human visual cortex. All patches of an image were assigned the subjective mean opinion score to overcome the problem of inadequate large-scale training data with subjective quality scores. Meanwhile,considering that patches from homogeneous regions might confuse the process of network training and quality score prediction,a threshold index based on variance was used to filter some homogeneous patches. The multi-level representation net\u0002work consisted of a primary and an advanced subnetwork. A disparity map was added to the network to form a three\u0002channel convolutional neural network in the primary subnetwork where the primary features of the stereoscopic view and disparity map were extracted and interacted. At the output of the primary subnetwork,the features were concate\u0002nated to obtain a disparity-based interactive binocular feature map and a no-disparity-based monocular feature map; thus,the advanced subnetwork used a two-channel convolutional neural network,which could further extract advanced fusion features and better simulate the information processing mechanism of the human visual system. The performance of the network was evaluated over LIVE 3D Phase Ⅰ and Phase Ⅱ databases. The experimental re-sults demonstrate that the multi-level representation network is superior to other state-of-the-art stereoscopic images quality assessment algorithms and can keep a high degree of consistency with human subjective perception.
Keyword_Chinese:立体图像质量评价;多级表示网络;视差;人类视觉系统
Keywords_English:stereoscopic image quality assessment;multi-level representation network;disparity;human visual system
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6612
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于多级表示网络的无参考立体图像质量评价
本站小编 Free考研考试/2022-01-16
相关话题/网络 质量
嵌入中心点预测模块的 Yolov3 遮挡人员检测网络
梁煜,李佳豪,张为,孙琦龙AuthorsHTML:梁煜1,李佳豪1,张为1,孙琦龙2AuthorsListE:LiangYu,LiJiahao,ZhangWei,SunQilongAuthorsHTMLE:LiangYu1,LiJiahao1,ZhangWei1,SunQilong2Unit:1.天 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于改进深度信念网络的 TMR 电流传感器 \n\t温漂与地磁场校正方法
杨挺,张卓凡,刘亚闯,王磊AuthorsHTML:杨挺1,张卓凡1,刘亚闯1,王磊2AuthorsListE:YangTing,ZhangZhuofan,LiuYachuang,WangLeiAuthorsHTMLE:YangTing1,ZhangZhuofan1,LiuYachuang1,Wang ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于 SDN-GMM 网络的低剂量双能 \n\tCT 投影数据去噪方法
史再峰,李慧龙,程明,曹清洁,王子菊AuthorsHTML:史再峰1,2,李慧龙1,程明1,曹清洁3,王子菊1AuthorsListE:ShiZaifeng,LiHuilong,ChengMing,CaoQingjie,WangZijuAuthorsHTMLE:ShiZaifeng1,2,LiHui ...天津大学科研学术 本站小编 Free考研考试 2022-01-16级联式生成对抗网络图像修复模型
何凯,刘坤,李宸,马希涛AuthorsHTML:何凯,刘坤,李宸,马希涛AuthorsListE:HeKai,LiuKun,LiChen,MaXitaoAuthorsHTMLE:HeKai,LiuKun,LiChen,MaXitaoUnit:天津大学电气自动化与信息工程学院,天津300072Unit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于生成对抗网络的虚拟试穿方法
张淑芳,王沁宇AuthorsHTML:张淑芳,王沁宇AuthorsListE:ZhangShufang,WangQinyuAuthorsHTMLE:ZhangShufang,WangQinyuUnit:天津大学电气自动化与信息工程学院,天津,300072Unit_EngLish:SchoolofEl ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于卷积神经网络和迁移学习的癫痫状态识别
曹玉珍,高晨阳,余辉,王江AuthorsHTML:曹玉珍1,高晨阳1,余辉1,王江2AuthorsListE:CaoYuzhen,GaoChenyang,YuHui,WangJiangAuthorsHTMLE:CaoYuzhen1,GaoChenyang1,YuHui1,WangJiang2Unit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于加权电流控制的多功能分布式电源电能质量控制
何晋伟,姬忠凯,韩俊飞,郭培健AuthorsHTML:何晋伟1,姬忠凯1,韩俊飞2,郭培健3AuthorsListE:HeJinwei,JiZhongkai,HanJunfei,GuoPeijianAuthorsHTMLE:HeJinwei1,JiZhongkai1,HanJunfei2,GuoPe ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于双重路径损耗的超密集网络性能分析\r\n\t\t
章辉1,李鸾1,隋学铭1,2,吕沅宏1AuthorsHTML:章辉1,李鸾1,隋学铭1,2,吕沅宏1AuthorsListE:ZhangHui1,LiLuan1,SuiXueming1,2,LüYuanhong1AuthorsHTMLE:Zhang ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于级联卷积神经网络的服饰关键点定位算法\r\n\t\t
李锵,姚麟倩,关欣AuthorsHTML:李锵,姚麟倩,关欣AuthorsListE:LiQiang,YaoLinqian,GuanXinAuthorsHTMLE:LiQiang,YaoLinqian,GuanXinUnit:天津大学微电子学院,天 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于投影权值归一化的立体图像质量评价方法\r\n\t\t
李素梅1,王明毅1,赵平1,秦龙斌1,2AuthorsHTML:李素梅1,王明毅1,赵平1,秦龙斌1,2AuthorsListE:LiSumei1,WangMingyi1,ZhaoPing1,QinLongbin1,2AuthorsHTMLE:Li ...天津大学科研学术 本站小编 Free考研考试 2022-01-16