\r李 锵,姚麟倩,关 欣\r
\r
AuthorsHTML:\r李 锵,姚麟倩,关 欣\r
\r
AuthorsListE:\rLi Qiang,Yao Linqian,Guan Xin\r
\r
AuthorsHTMLE:\rLi Qiang,Yao Linqian,Guan Xin\r
\r
Unit:\r天津大学微电子学院,天津 300072\r
\r
Unit_EngLish:\rSchool of Microelectronics,Tianjin University,Tianjin 300072,China\r
\r
Abstract_Chinese:\r\r随着深度学习的发展,使用深度卷积神经网络进行关键点定位受到了广泛关注.虽然在人体姿态、人脸识别等多个方面的关键点定位技术已经获得了长足的发展,但是应用于服饰的关键点定位由于其图像背景以及姿态等的多变性依然面临很大的挑战.服饰关键点定位技术在电商以及时尚搭配等方面有很大应用价值,本文将关键点定位应用于时尚领域,提出一种基于级联卷积神经网络的服饰关键点定位算法.该算法的目的是通过级联的两级卷积神经网络,实现对服饰关键点的初步定位以及对困难关键点的定位调整.算法的第\r1\r级以深度残差网络作为特征提取网络,在特征金字塔结构中引入空洞卷积,解决高层特征图感受野大但是空间分辨率低的问题,从而保留更多图像底层细节信息,实现对关键点的初步定位;第\r2\r级将第\r1\r级网络得到的定位结果作为关键点之间的结构先验,结合沙漏网络提取多尺度特征,对困难关键点进行精细调整,进一步提高定位精度.实验选用\r2018 FashionAI \r服饰关键点定位数据集进行训练和测试,将该数据集中对服饰关键点定位的平均归一化误差结果降低到\r3.56\r%\r,充分验证了算法的有效性.与几种常见关键点定位算法进行对比,本文算法在服饰关键点定位任务中取得最好效果,尤其是提高了对困难关键点的定位精度.\r\r
\r
Abstract_English:\r\rWith the development of deep learning\r,\rkey points detection using deep convolutional neural networks\r(\rCNN\r) \rhas attracted extensive attention. Although key points detection for human body posture and face recognition has developed rapidly\r,\rthe application of this technology to clothing faces great challenges because of the variability of the background and posture in clothing pictures. Technology for clothing key points detection has great value for e-commerce and fashion collocation. To apply an algorithm for key point detection to fashion\r,\rin this paper\r,\rwe propose an algorithm for clothing key points detection based on a cascade CNN. This algorithm first detects the key points of clothing and then adjusts difficult key points using a two-level cascade CNN. The first stage of the algorithm detects preliminary key points using ResNet to extract features\r,\rand then\r,\rto retain more detailed image information\r,\ruses dilated convolution to solve the problem of high receptive fields but low spatial resolution in the high-level feature map of a pyramid structure. Using the results from the first stage as a preliminary structure of key points\r,\rthe accuracy is then improved in the second stage by adjusting the difficult key points by combining them with multi-scale features extracted by an hourglass network. We used the 2018 FashionAI clothing landmark dataset for training and testing in the experiment. The normalized error was reduced to 3.56\r%\r in the clothing landmark detection task\r,\rwhich verifies the effectiveness of the network. Compared with the existing algorithm for key points\r,\rthe algorithm proposed in this paper achieves the best result in the task of clothing key points detection\r,\respecially in the detection of difficult key points.\r\r
\r
Keyword_Chinese:级联卷积神经网络;空洞卷积;沙漏网络;关键点定位\r
Keywords_English:cascade convolution neural network;dilated convolutions;hourglass network;key points detection\r
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6416
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于级联卷积神经网络的服饰关键点定位算法\r\n\t\t
本站小编 Free考研考试/2022-01-16
相关话题/卷积 神经网络
基于时频分析与神经网络的桥梁冲刷动力评估\r\n\t\t
熊文1,张愉1,李飞泉2,侯训田2,沈旭东3AuthorsHTML:熊文1,张愉1,李飞泉2,侯训田2,沈旭东3AuthorsListE:XiongWen1,ZhangYu1,LiFeiquan2,HouXuntian2,ShenXudong3Auth ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于时空感知级联神经网络的视频前背景分离\r\n\t\t
杨敬钰1,师雯1,李坤2,宋晓林1,岳焕景1AuthorsHTML:杨敬钰1,师雯1,李坤2,宋晓林1,岳焕景1AuthorsListE:YangJingyu1,ShiWen1,LiKun2,SongXiaolin1,YueHuanjing1Autho ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于神经网络的命名数据网学习型FIB 研究
刘开华,闫柳,李卓,宫霄霖,彭鹏,王彬志AuthorsHTML:刘开华,闫柳,李卓,宫霄霖,彭鹏,王彬志AuthorsListE:LiuKaihua,YanLiu,LiZhuo,GongXiaolin,PengPeng,WangBinzhiAuthorsHTMLE:LiuKaihua,YanLiu, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16一种改进的卷积神经网络的室内深度估计方法
梁煜,张金铭,张为AuthorsHTML:梁煜,张金铭,张为AuthorsListE:LiangYu,ZhangJinming,ZhangWeiAuthorsHTMLE:LiangYu,ZhangJinming,ZhangWeiUnit:天津大学微电子学院,天津300072Unit_EngLish: ...天津大学科研学术 本站小编 Free考研考试 2022-01-16嵌入DenseNet 结构和空洞卷积模块的改进YOLO v3 火灾检测算法
张为,魏晶晶AuthorsHTML:张为,魏晶晶AuthorsListE:ZhangWei,WeiJingjingAuthorsHTMLE:ZhangWei,WeiJingjingUnit:天津大学微电子学院,天津300072Unit_EngLish:SchoolofMicroelectronics ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于径向基函数神经网络和NSGA-Ⅱ的气保焊工艺多目标优化
吕小青1,2,王旭1,徐连勇1,2,荆洪阳1,2AuthorsHTML:吕小青1,2,王旭1,徐连勇1,2,荆洪阳1,2AuthorsListE:LüXiaoqing1,2,WangXu1,XuLianyong1,2,JingHongyang1,2AuthorsHTMLE:LüXiaoqing1,2 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于边缘特征融合和跨连接的车道线语义分割神经网络\r\n\t\t
庞彦伟,修宇璇AuthorsHTML:庞彦伟,修宇璇AuthorsListE:PangYanwei,XiuYuxuanAuthorsHTMLE:PangYanwei,XiuYuxuanUnit:天津大学电气自动化与信息工程学院,天津300072 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于BP神经网络的产品性能满意度预测分析\r\n\t\t
邵宏宇1,孟琦1,赵楠1,2,陈辰1,郭伟1AuthorsHTML:邵宏宇1,孟琦1,赵楠1,2,陈辰1,郭伟1AuthorsListE:ShaoHongyu1,MengQi1,ZhaoNan1,2,ChenChen1,GuoWei1AuthorsHT ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于融合算法优化的卷积神经网络预测方法\r\n\t\t
董娜,常建芳,吴爱国AuthorsHTML:董娜,常建芳,吴爱国AuthorsListE:DongNa,ChangJianfang,WuAiguoAuthorsHTMLE:DongNa,ChangJianfang,WuAiguoUnit:天津大学电 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于时-空特征的全卷积网络用于视频人眼关注预测的研究\r\n\t\t
史久琛1,孙美君2,王征2,张冬3AuthorsHTML:史久琛1,孙美君2,王征2,张冬3AuthorsListE:ShiJiuchen1,SunMeijun2,WangZheng2,ZhangDong3AuthorsHTMLE:ShiJiuch ...天津大学科研学术 本站小编 Free考研考试 2022-01-16