刘开华,闫 柳,李 卓,宫霄霖,彭 鹏,王彬志
AuthorsHTML:刘开华,闫 柳,李 卓,宫霄霖,彭 鹏,王彬志
AuthorsListE:Liu Kaihua,Yan Liu,Li Zhuo,Gong Xiaolin,Peng Peng,Wang Binzhi
AuthorsHTMLE:Liu Kaihua,Yan Liu,Li Zhuo,Gong Xiaolin,Peng Peng,Wang Binzhi
Unit:天津大学微电子学院,天津 300072
Unit_EngLish:School of Microelectronics,Tianjin University,Tianjin 300072,China
Abstract_Chinese:针对命名数据网转发信息库快速检索差异化名称数据、高效存储转发信息和有效支持最长名称前缀匹配机制的需求和挑战,提出了基于神经网络的命名数据网学习型FIB整体方案,称L-FIB.首先,介绍了L-FIB的索引结构Learning Tree,通过使用塔式两级神经网络模型学习索引内容在存储器中的分布情况,实现更均匀的数据映射,降低映射冲突,提高存储效率.其次,研究了L-FIB的存储结构和名称数据检索算法,片内高速存储器部署多个与不同名称前缀组件数相对应的索引结构Learning Tree,片外低速存储器部署多个与索引结构Learning Tree对应的FIB存储池,并通过相应的名称数据检索算法实现对兴趣包的转发信息检索和转发信息更新操作,有效支持了命名数据网的最长名称前缀匹配机制,提高了名称数据检索速度.实验结果表明,L-FIB在误判概率、存储消耗和吞吐量方面的综合性能明显优于其他对比方案.在误判概率低于1%的条件下,L-FIB的索引结构存储消耗仅为58.258MB,能够部署于高速存储器SRAM上.L-FIB的实际吞吐量约为11.64×106数据包/s,可以满足当前命名数据网对数据包快速处理的要求.
Abstract_English:Designing an effective forwarding information base(FIB)for named data networking(NDN)is a major challenge within the overall NDN research area,since an FIB has to perform fast lookups for complex names,provide high capacity,and accurately support the mechanism of longest name prefix matching (LNPM). Therefore,a learning FIB based on neural networks,called L-FIB,was proposed. First,the index of L-FIB,named Learning Tree,used a two-level neural network model to learn the distribution characteristic of data indexed in static memory,which achieved more uniform mapping,reduced the false positive probability and improved memory utili-zation. Second,the storage structure and name lookup algorithms of L-FIB were put forward. The on-chip memory using SRAMs deployed multiple Learning Trees corresponding to the name prefixes with different numbers of compo-nents,while the off-chip memory using DRAMs deployed multiple FIB stores corresponding to the Learning Trees. The name lookup algorithms were also described to implement the retrieval of forwarding information for the Interest packets and the update of forwarding information. This well supported the LNPM mechanism and realized fast name lookups. Experimental results showed that the overall performance of L-FIB was superior to the compared schemes in terms of false positive probability,memory consumption,and the throughput. The index of L-FIB significantly re-duced memory consumption to 58.258MB with the probability of false positive<1%,which meant it was deployable on SRAMs in commercial line cards. The throughput of L-FIB was about 11.64 million packets per second,which met current network requirements for fast packet processing.
Keyword_Chinese:命名数据网;转发信息库;神经网络;名称数据检索
Keywords_English:named data networking(NDN);forwarding information base(FIB);neural network;name lookup
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6498
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于神经网络的命名数据网学习型FIB 研究
本站小编 Free考研考试/2022-01-16
相关话题/数据 神经网络
一种改进的卷积神经网络的室内深度估计方法
梁煜,张金铭,张为AuthorsHTML:梁煜,张金铭,张为AuthorsListE:LiangYu,ZhangJinming,ZhangWeiAuthorsHTMLE:LiangYu,ZhangJinming,ZhangWeiUnit:天津大学微电子学院,天津300072Unit_EngLish: ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于径向基函数神经网络和NSGA-Ⅱ的气保焊工艺多目标优化
吕小青1,2,王旭1,徐连勇1,2,荆洪阳1,2AuthorsHTML:吕小青1,2,王旭1,徐连勇1,2,荆洪阳1,2AuthorsListE:LüXiaoqing1,2,WangXu1,XuLianyong1,2,JingHongyang1,2AuthorsHTMLE:LüXiaoqing1,2 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于边缘特征融合和跨连接的车道线语义分割神经网络\r\n\t\t
庞彦伟,修宇璇AuthorsHTML:庞彦伟,修宇璇AuthorsListE:PangYanwei,XiuYuxuanAuthorsHTMLE:PangYanwei,XiuYuxuanUnit:天津大学电气自动化与信息工程学院,天津300072 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于BP神经网络的产品性能满意度预测分析\r\n\t\t
邵宏宇1,孟琦1,赵楠1,2,陈辰1,郭伟1AuthorsHTML:邵宏宇1,孟琦1,赵楠1,2,陈辰1,郭伟1AuthorsListE:ShaoHongyu1,MengQi1,ZhaoNan1,2,ChenChen1,GuoWei1AuthorsHT ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于融合算法优化的卷积神经网络预测方法\r\n\t\t
董娜,常建芳,吴爱国AuthorsHTML:董娜,常建芳,吴爱国AuthorsListE:DongNa,ChangJianfang,WuAiguoAuthorsHTMLE:DongNa,ChangJianfang,WuAiguoUnit:天津大学电 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于多普勒雷达数据的强辐合场识别方法
王萍,窦冰杰AuthorsHTML:王萍,窦冰杰AuthorsListE:WangPing,DouBingjieAuthorsHTMLE:WangPing,DouBingjieUnit:天津大学电气自动化与信息工程学院,天津300072Unit_EngLish:SchoolofElectricala ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于卷积神经网络的第一导联心电图心拍分类
庞彦伟,李潇,梁金升,何宇清AuthorsHTML:庞彦伟,李潇,梁金升,何宇清AuthorsListE:PangYanwei,LiXiao,LiangJinsheng,HeYuqingAuthorsHTMLE:PangYanwei,LiXiao,LiangJinsheng,HeYuqingUnit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于静态与动态神经网络的运河水位预报
江衍铭1,郝偌楠1,李楠楠1,汪健2AuthorsHTML:江衍铭1,郝偌楠1,李楠楠1,汪健2AuthorsListE:ChiangYenming1,HaoRuonan1,LiNannan1,WangJian2AuthorsHTMLE:ChiangYenming1,HaoRuonan1,LiNan ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于OBD采集数据的发动机扭矩重构算法
谢辉,李修飞AuthorsHTML:谢辉,李修飞AuthorsListE:XieHui,LiXiufeiAuthorsHTMLE:XieHui,LiXiufeiUnit:天津大学内燃机燃烧学国家重点实验室,天津300072Unit_EngLish:StateKeyLaboratoryofEngine ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于风场数据的气旋和反气旋自动识别算法
庄硕,王萍,侯洁AuthorsHTML:庄硕,王萍,侯洁AuthorsListE:ZhuangShuo,WangPing,HouJieAuthorsHTMLE:ZhuangShuo,WangPing,HouJieUnit:天津大学电气自动化与信息工程学院,天津300072Unit_EngLish:S ...天津大学科研学术 本站小编 Free考研考试 2022-01-16