梁 煜,张金铭,张 为
AuthorsHTML:梁 煜,张金铭,张 为
AuthorsListE:Liang Yu,Zhang Jinming,Zhang Wei
AuthorsHTMLE:Liang Yu,Zhang Jinming,Zhang Wei
Unit:天津大学微电子学院,天津 300072
Unit_EngLish:School of Microelectronics,Tianjin University,Tianjin 300072,China
Abstract_Chinese:针对单幅图像的室内深度估计缺少显著局部或全局特征问题,提出了一种基于多种网络(全卷积网络分别与通道注意力网络、残差网络结合)构成的编码器解码器结构.该网络采用端到端的学习框架.首先使用全卷积网络与通道注意力网络结合的全卷积通道注意力网络模块作为编码器,通过信道信息获取全局感受野,提高特征图精度,并适当地将全连接层改为卷积层以达到减少网络参数的目的.然后将全卷积网络与残差网络结合构成的上采样模块作为解码器,利用ResNet的特点——跳层连接,将解码器网络加深,提高深度图的精度,将卷积网络与残差网络结合,实现端对端,并减少网络运行所用时间.最后,使用L1损失函数优化模型.在公开数据集NYU Depth v2的测试下,实验结果表明,和现有的其他单目深度估计方法相比,本文所提出的网络模型不仅精简了繁琐的精化粗图的过程,而且所预测的深度图精度更高,阈值精度的提升不少于0.5%,运行网络结构的平均用时21ms,为实现实时性奠定了基础,具有一定的理论研究价值和实际应用价值.
Abstract_English:There exists a general lack of significant local or global features for the indoor depth estimation of a single image. To address this,an encoder-decoder structure based on multiple networks(full convolutional networks (FCN),SENet and ResNet)was proposed. This network adopted an end-to-end learning framework to construct the model. First,the fully convolutional squeeze-and-excitation net(FCSE_block)module,consisting of the fully con-volutional networks and SENet,was used as the encoder. The global receptive field was obtained by channel informa-tion to improve accuracy of the feature map,and the fully connected layers were replaced by the convolutional layers to reduce the network parameters. Then the up-sampling module composed of fully convolutional networks and Res-Net was used as the decoder. The decoder network was deepened,and accuracy of the depth map was improved using ResNet’s characteristic,skip-connection. The convolutional network and ResNet were combined to realize an end-to-end learning framework. Finally,the L1 loss function was used to optimize the proposed network architecture. Under the test of the open data set NYU Depth v2,the experimental results showed that,compared with other existing mo-nocular depth estimation methods,the proposed network model not only simplified the tedious process of refinement of rough maps,but also had higher accuracy in predicting depth maps. The improvement in threshold accuracy was not less than 0.5%. Moreover,the average running time of the network structure was 21ms,which laid the founda-tion for realizing real-time performance and had certain theoretical research and practical application value.
Keyword_Chinese:机器视觉;卷积神经网络;室内深度估计;单目图像;深度学习
Keywords_English:computer vision;convolutional neural network;indoor depth estimation;monocular image;deep learning
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6500
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
一种改进的卷积神经网络的室内深度估计方法
本站小编 Free考研考试/2022-01-16
相关话题/卷积 神经网络
嵌入DenseNet 结构和空洞卷积模块的改进YOLO v3 火灾检测算法
张为,魏晶晶AuthorsHTML:张为,魏晶晶AuthorsListE:ZhangWei,WeiJingjingAuthorsHTMLE:ZhangWei,WeiJingjingUnit:天津大学微电子学院,天津300072Unit_EngLish:SchoolofMicroelectronics ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于径向基函数神经网络和NSGA-Ⅱ的气保焊工艺多目标优化
吕小青1,2,王旭1,徐连勇1,2,荆洪阳1,2AuthorsHTML:吕小青1,2,王旭1,徐连勇1,2,荆洪阳1,2AuthorsListE:LüXiaoqing1,2,WangXu1,XuLianyong1,2,JingHongyang1,2AuthorsHTMLE:LüXiaoqing1,2 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于边缘特征融合和跨连接的车道线语义分割神经网络\r\n\t\t
庞彦伟,修宇璇AuthorsHTML:庞彦伟,修宇璇AuthorsListE:PangYanwei,XiuYuxuanAuthorsHTMLE:PangYanwei,XiuYuxuanUnit:天津大学电气自动化与信息工程学院,天津300072 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于BP神经网络的产品性能满意度预测分析\r\n\t\t
邵宏宇1,孟琦1,赵楠1,2,陈辰1,郭伟1AuthorsHTML:邵宏宇1,孟琦1,赵楠1,2,陈辰1,郭伟1AuthorsListE:ShaoHongyu1,MengQi1,ZhaoNan1,2,ChenChen1,GuoWei1AuthorsHT ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于融合算法优化的卷积神经网络预测方法\r\n\t\t
董娜,常建芳,吴爱国AuthorsHTML:董娜,常建芳,吴爱国AuthorsListE:DongNa,ChangJianfang,WuAiguoAuthorsHTMLE:DongNa,ChangJianfang,WuAiguoUnit:天津大学电 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于时-空特征的全卷积网络用于视频人眼关注预测的研究\r\n\t\t
史久琛1,孙美君2,王征2,张冬3AuthorsHTML:史久琛1,孙美君2,王征2,张冬3AuthorsListE:ShiJiuchen1,SunMeijun2,WangZheng2,ZhangDong3AuthorsHTMLE:ShiJiuch ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于卷积神经网络的第一导联心电图心拍分类
庞彦伟,李潇,梁金升,何宇清AuthorsHTML:庞彦伟,李潇,梁金升,何宇清AuthorsListE:PangYanwei,LiXiao,LiangJinsheng,HeYuqingAuthorsHTMLE:PangYanwei,LiXiao,LiangJinsheng,HeYuqingUnit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于盲反卷积的超分辨率图像盲复原算法
元伟1,张立毅1,2AuthorsHTML:元伟1,张立毅1,2AuthorsListE:YuanWei1,ZhangLiyi1,2AuthorsHTMLE:YuanWei1,ZhangLiyi1,2Unit:1.天津大学电子信息工程学院,天津300072;2.天津商业大学信息工程学院,天津3001 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于静态与动态神经网络的运河水位预报
江衍铭1,郝偌楠1,李楠楠1,汪健2AuthorsHTML:江衍铭1,郝偌楠1,李楠楠1,汪健2AuthorsListE:ChiangYenming1,HaoRuonan1,LiNannan1,WangJian2AuthorsHTMLE:ChiangYenming1,HaoRuonan1,LiNan ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于深度可分离卷积的实时农业图像逐像素分类研究
刘庆飞,张宏立,王艳玲.基于深度可分离卷积的实时农业图像逐像素分类研究[J].中国农业科学,2018,51(19):3673-3682https://doi.org/10.3864/j.issn.0578-1752.2018.19.005LIUQingFei,ZHANGHongLi,WANGYanL ...中国农业科学院科研学术 本站小编 Free考研考试 2021-12-26