吕小青1, 2,王 旭1,徐连勇1, 2,荆洪阳1, 2
AuthorsHTML:吕小青1, 2,王 旭1,徐连勇1, 2,荆洪阳1, 2
AuthorsListE:Lü Xiaoqing 1, 2,Wang Xu 1,Xu Lianyong 1, 2,Jing Hongyang 1, 2
AuthorsHTMLE:Lü Xiaoqing 1, 2,Wang Xu 1,Xu Lianyong 1, 2,Jing Hongyang 1, 2
Unit:1. 天津大学材料科学与工程学院,天津 300350;
2. 天津市现代连接技术重点实验室,天津 300350
Unit_EngLish:1. School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China;
2. Tianjin Key Laboratory of Advanced Joining Technology,Tianjin 300350,China
Abstract_Chinese:以焊缝高宽比和深宽比作为优化目标,结合径向基函数神经网络和带精英策略的非支配排序的多目标遗传算法NSGA-Ⅱ,实现了多目标优化.建立了以焊接电压、送丝速度、焊接速度作为自变量,预测焊缝熔宽、余高和熔深的5种模型,即误差反向传播神经网络、遗传算法优化的误差反向传播神经网络、克里金插值法、径向基函数神经网络和二阶多项式回归模型.对比分析表明,径向基函数神经网络具有较高的预测精度和稳定性,最为合适.最后,利用NSGA-Ⅱ算法实现了以盖面焊和填充焊为应用场景的工艺参数多目标优化,试验证明了该优化方法的有效性.
Abstract_English:This paper used the combination of radial-based function neural network(RBFNN)and multi-objective genetic algorithm(NSGA-Ⅱ)to realize the multi-objective optimization of the weld reinforcement-width ratio and the penetration-width ratio. With welding voltage,wire feeding speed,and welding speed as independent variables,five models—error backpropagation neural network(BPNN),BPNN optimized by genetic algorithm,Kriging method,second-order polynomial regression model,and RBFNN—were developed to predict the geometry of welding beads(penetration depth,weld bead width,and weld reinforcement). Comparative analysis shows that RBFNN was selected as the most suitable model due to its higher prediction accuracy and stability. Finally,NSGA-Ⅱ was used to achieve multi-objective optimization for welding filling and cosmetic welding. The verification experiment proved the availability of the multi-objective optimization strategy.
Keyword_Chinese:焊接工艺参数;焊缝形貌;多目标优化;神经网络;多目标遗传算法
Keywords_English:welding process parameter;geometry of welding bead;multi-objective optimization;neural network;multi-objective genetic algorithm
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6524
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于径向基函数神经网络和NSGA-Ⅱ的气保焊工艺多目标优化
本站小编 Free考研考试/2022-01-16
相关话题/优化 神经网络
多种光伏组件组合光伏电站的混合储能容量优化配置研究
马超,董森,华正操AuthorsHTML:马超,董森,华正操AuthorsListE:MaChao,DongSen,HuaZhengcaoAuthorsHTMLE:MaChao,DongSen,HuaZhengcaoUnit:天津大学水利工程仿真与安全国家重点实验室,天津300350Unit_Eng ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于QbD 理念优化苦参生物碱的分离工艺
蒋建兰1,2,单潇潇1,2,孙露1,2,张凯旋1,2AuthorsHTML:蒋建兰1,2,单潇潇1,2,孙露1,2,张凯旋1,2AuthorsListE:JiangJianlan1,2,ShanXiaoxiao1,2,SunLu1,2,ZhangKaixuan1,2AuthorsHTMLE:Jian ...天津大学科研学术 本站小编 Free考研考试 2022-01-16处理高黏度溢油的溢油分散剂的制备及优化\t\t
卢文玉1,2,祝宝忠1,2,贾晓强1,2AuthorsHTML:卢文玉1,2,祝宝忠1,2,贾晓强1,2AuthorsListE:LuWenyu1,2,ZhuBaozhong1,2,JiaXiaoqiang1,2AuthorsHTMLE:LuWenyu1,2,ZhuBaozhong1 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16电磁式柔性直线驱动器概念设计与参数优化\t\t
刘海涛1,魏天元1,王友渔2,刘玉华1AuthorsHTML:刘海涛1,魏天元1,王友渔2,刘玉华1AuthorsListE:LiuHaitao1,WeiTianyuan1,WangYouyu2,LiuYuhua1AuthorsHTMLE:LiuHaitao1,WeiTianyuan ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于非水基电解液的钛合金微细电解加工工艺优化\t\t
敖三三1,李康柏1,刘为东1,张辉1,张威1,罗震1,2AuthorsHTML:敖三三1,李康柏1,刘为东1,张辉1,张威1,罗震1,2AuthorsListE:AoSansan1,LiKangbai1,LiuWeidong1,ZhangHui1,ZhangWei1,LuoZhen1,2 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16海上风电筒型结构基础层状地基参数优化反演\r\n\t\t
赵悦1,2,练冲1,2,练继建1,2,董霄峰1,2,王海军1,2AuthorsHTML:赵悦1,2,练冲1,2,练继建1,2,董霄峰1,2,王海军1,2AuthorsListE:ZhaoYue1,2,LianChong1,2,LianJijian1,2,DongX ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于边缘特征融合和跨连接的车道线语义分割神经网络\r\n\t\t
庞彦伟,修宇璇AuthorsHTML:庞彦伟,修宇璇AuthorsListE:PangYanwei,XiuYuxuanAuthorsHTMLE:PangYanwei,XiuYuxuanUnit:天津大学电气自动化与信息工程学院,天津300072 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于代理模型的碾压混凝土坝坝体渗控结构多目标优化\r\n\t\t
程正飞,王晓玲,任炳昱,吕鹏,余红玲AuthorsHTML:程正飞,王晓玲,任炳昱,吕鹏,余红玲AuthorsListE:ChengZhengfei,WangXiaoling,RenBingyu,LüPeng,YuHonglingAuthorsHTMLE:Ch ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于BP神经网络的产品性能满意度预测分析\r\n\t\t
邵宏宇1,孟琦1,赵楠1,2,陈辰1,郭伟1AuthorsHTML:邵宏宇1,孟琦1,赵楠1,2,陈辰1,郭伟1AuthorsListE:ShaoHongyu1,MengQi1,ZhaoNan1,2,ChenChen1,GuoWei1AuthorsHT ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于融合算法优化的卷积神经网络预测方法\r\n\t\t
董娜,常建芳,吴爱国AuthorsHTML:董娜,常建芳,吴爱国AuthorsListE:DongNa,ChangJianfang,WuAiguoAuthorsHTMLE:DongNa,ChangJianfang,WuAiguoUnit:天津大学电 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16