\r李素梅1,王明毅1,赵 平1,秦龙斌\r1, 2\r
\r
AuthorsHTML:\r李素梅1,王明毅1,赵 平1,秦龙斌\r1, 2\r
\r
AuthorsListE:\rLi Sumei1,Wang Mingyi1,Zhao Ping1,Qin Longbin\r1, 2\r
\r
AuthorsHTMLE:\rLi Sumei1,Wang Mingyi1,Zhao Ping1,Qin Longbin\r1, 2\r
\r
Unit:\r\r1. 天津大学电气自动化与信息工程学院,天津 300072;\r
\r\r2. 昌都市公安局,昌都854000\r
\r
\r
Unit_EngLish:\r1. School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;
2. Changdu Public Security Bureau,Changdu 854000,China\r
\r
Abstract_Chinese:\r\r\r\r本文基于深度卷积神经网络和融合图像提出了一种引入投影权值归一化的立体图像质量评价方法.首先基于人眼双目竞争现象,提出对经过\r\rGabor\r滤波后的左右视点图像进行彩色融合,从而得到单幅融合图像.卷积神经网络的输入即为预处理后的融合图像,通过卷积层自主对图像特征进行提取,采用池化层对特征信息降维,保留显著特征且减小网络计算复杂度;采用\rReLU\r非线性激活函数缓解梯度消失,有效缓解了网络过拟合问题;网络引入数据批量归一化来规范各层输入数据的分布,引入投影权值归一化来保证权值参数的量级相同,有效地提升了算法的性能.本文在公开的立体图像库\rLIVE\r-\rⅠ和\rLIVE\r-\rⅡ上进行了实验.实验结果表明,本文方法在对称失真与非对称失真的立体图像质量评价上均具有较好的性能.\r\r\r\r
\r
Abstract_English:\r\rCurrently\r,\rthe wide application of three-dimensional\r(\r3D\r)\rimagery makes stereoscopic image quality assessment\r(\rSIQA\r)\rincreasingly important in industry. Extensive application of deep learning promotes the development of SIQA methods based on convolution neural networks\r(\rCNN\r)\r. Compared with the traditional hand-crafted feature extraction process\r,\rCNN conforms more to human brain mechanisms\r.\rHowever\r,\rwith the depth of CNN\r,\roptimization of parameters and data in CNN is essential to improve the performance and efficiency of a network. In addition\r,\rby simulating the process of stereoscopic images in the human brain\r,\rthe construction of image fusion methods consistent with the human visual system has become an issue in SIQA. Based on deep CNN\r,\ra SIQA method is proposed using projection-based weight normalization. This method implemented a Gabor filter to left and right images\r,\rand fused them to obtain one new\r,\rcolorful\r,\rcyclopean image. Model input was the fused image after pretreatment. Convolution layers were applied to extract features autonomously\r,\rand pooling layers were adopted to reduce the dimension of feature information\r,\rretain significant features\r,\rand reduce the computational complexity of the network. Rectified linear units\r(\rReLU\r)\rwere used to mitigate the disappearance of gradients\r,\reffectively alleviating over-fitting. In addition\r,\reach layer’s inputs were identically distributed using batch normalization. Projection-based weight normalization ensured that the weight of each neuron had almost the same magnitude. These methods improved the model’s performance. Experiments were conducted on the published LIVE-\rⅠ\r and LIVE-\rⅡ\r databases. Experimental results showed that the method performs well on both symmetrical and asymmetrical stereoscopic image databases.\r\r
\r
Keyword_Chinese:立体图像质量评价;卷积神经网络;投影权值归一化;数据批量归一化\r
Keywords_English:stereoscopic image quality assessment;convolution neural network(CNN);projection-based weight normalization(PBWN);batch normalization(BN)\r
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6419
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于投影权值归一化的立体图像质量评价方法\r\n\t\t
本站小编 Free考研考试/2022-01-16
相关话题/质量 评价
基于改进可变模糊集法的溃坝生命损失评价及其应用\r\n\t\t
李巍1,2,李宗坤1,葛巍1,郭新燕1AuthorsHTML:李巍1,2,李宗坤1,葛巍1,郭新燕1AuthorsListE:LiWei1,2,LiZongkun1,GeWei1,GuoXinyan1AuthorsHTMLE:LiWei1,2,Li ...天津大学科研学术 本站小编 Free考研考试 2022-01-16正负电荷改性乙肝病毒样颗粒的构建及性能评价\r\n\t\t
张麟,陈衡AuthorsHTML:张麟,陈衡AuthorsListE:ZhangLin,ChenHengAuthorsHTMLE:ZhangLin,ChenHengUnit:天津大学化工学院,天津300072Unit_EngLish:S ...天津大学科研学术 本站小编 Free考研考试 2022-01-16BM-MSCs 的CNN 特征映射与活性评价模型研究\r\n\t\t
曹玉珍1,张乾昆1,孙敬来1,张力新1,余辉1,庞天翔2AuthorsHTML:曹玉珍1,张乾昆1,孙敬来1,张力新1,余辉1,庞天翔2AuthorsListE:CaoYuzhen1,ZhangQiankun1,SunJinglai1,ZhangLixin1,YuHui1 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于奇异值分解的无参考立体图像质量评价\r\n\t\t
沈丽丽,王莹AuthorsHTML:沈丽丽,王莹AuthorsListE:ShenLili,WangYingAuthorsHTMLE:ShenLili,WangYingUnit:天津大学电气自动化与信息工程学院,天津300072Unit_E ...天津大学科研学术 本站小编 Free考研考试 2022-01-16轧钢加热炉节能理论及提效方案规划与评价\r\n\t\t
赵军,王稼晨,闫祺,马凌,李文甲AuthorsHTML:赵军,王稼晨,闫祺,马凌,李文甲AuthorsListE:ZhaoJun,WangJiachen,YanQi,MaLing,LiWenjiaAuthorsHTMLE:ZhaoJun,WangJiachen ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于视差图指导的无参考立体图像质量评价
李素梅,丁义修,常永莉,韩旭AuthorsHTML:李素梅,丁义修,常永莉,韩旭AuthorsListE:LiSumei,DingYixiu,ChangYongli,HanXuAuthorsHTMLE:LiSumei,DingYixiu,ChangYongli,HanXuUnit:天津大学电气自动化 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于双目融合网络的立体图像质量评价
李素梅,韩永甜,马帅,韩旭AuthorsHTML:李素梅,韩永甜,马帅,韩旭AuthorsListE:LiSumei,HanYongtian,MaShuai,HanXuAuthorsHTMLE:LiSumei,HanYongtian,MaShuai,HanXuUnit:天津大学电气自动化与信息工程学 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于稀疏字典学习的立体图像质量评价\t\t
李素梅,常永莉,韩旭,胡佳洁AuthorsHTML:李素梅,常永莉,韩旭,胡佳洁AuthorsListE:LiSumei,ChangYongli,HanXu,HuJiajieAuthorsHTMLE:LiSumei,ChangYongli,HanXu,HuJi ...天津大学科研学术 本站小编 Free考研考试 2022-01-16新蛭素和人IgG-Fc 融合蛋白的表达纯化和功能评价\t\t
吴祖泽1,2,汪坤1,李世崇2,董晓娜2,窦桂芳2,葛志强1,靳继德2AuthorsHTML:吴祖泽1,2,汪坤1,李世崇2,董晓娜2,窦桂芳2,葛志强1,靳继德2AuthorsListE:WuZuze1,2,WangKun1,LiShichong2,DongXiaona2,DouGui ...天津大学科研学术 本站小编 Free考研考试 2022-01-16商用车柴油机加速声品质主客观评价研究\t\t
张俊红1,2,段超阳1,林杰威1,周启迪1,汤周杰1,徐天舒1AuthorsHTML:张俊红1,2,段超阳1,林杰威1,周启迪1,汤周杰1,徐天舒1AuthorsListE:ZhangJunhong1,2,DuanChaoyang1,LinJiewei1,ZhouQidi1,TangZh ...天津大学科研学术 本站小编 Free考研考试 2022-01-16