删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于奇异值分解的无参考立体图像质量评价\r\n\t\t

本站小编 Free考研考试/2022-01-16

\r沈丽丽,王 莹\r
\r
AuthorsHTML:\r沈丽丽,王 莹\r
\r
AuthorsListE:\rShen Lili,Wang Ying\r
\r
AuthorsHTMLE:\rShen Lili,Wang Ying\r
\r
Unit:\r天津大学电气自动化与信息工程学院,天津 300072\r
\r
Unit_EngLish:\rSchool of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China\r
\r
Abstract_Chinese:\r\r针对非对称失真立体图像,提出了一种基于奇异值分解的无参考评价算法.该方法首先考虑人眼对空间频率变化敏感的特性和双目融合特性,对立体图像进行\rGabor\r滤波,基于奇异值分解的融合策略生成融合图.然后,采用亮度加权直方图的局部二值模式算法分别对融合图、左右子图像提取特征,并将左右子图像的特征向量融合、采用欧几里得距离和夹角余弦进行向量之间的比较;为度量非对称失真差异,利用图像相似度算法计算左右子图像之间的相似性.最后,将融合图的特征向量、子图像的融合及比较特征向量、子图像的相似度特征向量级联,利用支持向量回归\r(\rSVR\r)\r算法完成特征到主观质量分数的回归映射.在\rLIVE 3D \rⅡ\r、\rWaterloo\r-\rIVC \rⅠ\r和\rWaterloo\r-\rIVC \rⅡ\r立体图像库上对本算法进行测试.实验结果表明,本算法性能良好,优于目前主流的立体图像质量评价算法.\r\r
\r
Abstract_English:\r\rFor asymmetrically distorted stereoscopic images\r,\ra no-reference evaluation algorithm based on singular value decomposition is proposed\r.\rFirst\r,\rconsidering visual sensitivity to spatial frequency variation and binocular fusion\r,\rGabor filtering was performed on the stereoscopic image\r,\rand a fusion strategy based on singular value decomposition was proposed to generate a cyclopean image of the left and right sub-image pair\r.\rThen\r,\rthe proposed luminance-weighted histogram local binary pattern metric was used to extract features of the cyclopean image and the left and right sub-images\r.\rFurthermore\r,\rfeature fusion and comparison were conducted on the two feature vectors corresponding to the left and right sub-images\r,\rrespectively\r.\rEuclidean distance and cosine were used to implement the vector comparison\r.\rParticularly\r,\rto measure the difference between asymmetrically distorted sub-image pair\r,\rimage similarity metric was utilized to calculate the similarity between the left and right sub-image pair\r.\rFinally\r,\rfeature vector of the cyclopean image\r,\rthe fusion and comparison feature vectors\r,\rand the similarity feature vector were concatenated into a total feature vector\r,\rand regression mapping was performed from the feature vector to the subjective score using support vector regression\r.\rThe algorithm was tested on the LIVE 3D \rⅡ\r,\rWaterloo-IVC \rⅠ\r and Waterloo-IVC \rⅡ\r databases\r.\rThe experimental results show that the proposed algorithm has an outstanding performance and is superior to other state-of-the-art image quality assessment metrics\r.\r\r
\r
Keyword_Chinese:立体图像质量评价;非对称失真;奇异值分解;欧几里得距离;图像相似度\r

Keywords_English:stereoscopic image quality assessment;asymmetric distortion;singular value decomposition;Euclidean distance;image similarity\r


PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6473
相关话题/质量 分解