何 凯,刘 坤,李 宸,马希涛
AuthorsHTML:何 凯,刘 坤,李 宸,马希涛
AuthorsListE:He Kai,Liu Kun,Li Chen,Ma Xitao
AuthorsHTMLE:He Kai,Liu Kun,Li Chen,Ma Xitao
Unit:天津大学电气自动化与信息工程学院,天津 300072
Unit_EngLish:School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
Abstract_Chinese:为解决现有算法容易产生图像模糊或纹理失真的问题,提出了一种级联式生成对抗网络图像修复模型.该 模型由粗化和优化生成子网络串联而成.在粗化生成网络中设计了一种并行卷积模块,由 3 层卷积通路和 1 个深层 卷积通路并联组成,当网络层数较深时,可解决梯度消失问题;在深层卷积通路中提出了一种特征提取模块,可利 用不同大小的卷积核来获取更加丰富的图像信息.此外,在优化生成网络中提出了一种级联残差模块,通过对 4 个 通道的双层卷积进行交叉级联,可有效增强特征复用;将卷积结果与模块输入特征图的元素对应相加,进行局部残 差学习,可提高网络的表达能力;同时采用空洞卷积,可以充分利用上下文信息,保留更多的图像底层细节,实现 图像的精细修复.仿真实验结果表明,本文算法修复图像视觉效果好,在 3 个数据集上峰值信噪比(PSNR)分别为 18.453 2、18.549 6、21.529 9;结构相似度(SSIM)为 0.897 2、0.968 3、0.895 6,量化结果在对比算法中均为最高, 实现复杂结构和纹理信息的自动修复.
Abstract_English:To solve the problem of image blur or texture distortion in the existing algorithms,this study proposes a new image inpainting model,called the cascaded generative adversarial networks(C-GAN). The model is cascaded by the coarsening and refinement generation of the sub-networks. In the coarsening generation network,a parallel convolution module is designed to solve the gradient disappearance problem of deep network. It is composed of a three-layer convolution path and a deep one in parallel. In the deep convolution path,a feature extraction module is proposed to achieve a richer image information using convolution kernels of different sizes. Additionally,a cascaded residual module is proposed in the refinement generation network to effectively enhance the feature reuse by cross\u0002cascading the double-layer convolution with four channels. Besides,a module input feature map is added to the cor\u0002responding elements of the convolution result to improve the expressive ability of the network. Simultaneously, employment of the dilated convolution can fully make use of the context information and retain more rock-bottom image details,which is helpful to achieve a fine restoration. Simulation results demonstrate that the proposed algorithm can achieve better visual effects. For dataset 1,2,and 3,the peak signal-to-noise ratio(PSNR)values are 18.453 2,18.549 6,and 21.529 9 and the structural similarity(SSIM)values are 0.897 2,0.968 3,and 0.895 6 respectively. Highest quantification results are achieved using the comparison algorithm,implying that this algorithm can automatically inpaint some complex structures and texture information.
Keyword_Chinese:图像修复;生成对抗网络;特征提取模块;残差模块
Keywords_English:image inpainting;generative adversarial network;feature extraction module;residual module
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6677
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
级联式生成对抗网络图像修复模型
本站小编 Free考研考试/2022-01-16
相关话题/图像 网络
基于生成对抗网络的虚拟试穿方法
张淑芳,王沁宇AuthorsHTML:张淑芳,王沁宇AuthorsListE:ZhangShufang,WangQinyuAuthorsHTMLE:ZhangShufang,WangQinyuUnit:天津大学电气自动化与信息工程学院,天津,300072Unit_EngLish:SchoolofEl ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于卷积神经网络和迁移学习的癫痫状态识别
曹玉珍,高晨阳,余辉,王江AuthorsHTML:曹玉珍1,高晨阳1,余辉1,王江2AuthorsListE:CaoYuzhen,GaoChenyang,YuHui,WangJiangAuthorsHTMLE:CaoYuzhen1,GaoChenyang1,YuHui1,WangJiang2Unit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16一种基于MRF的快速图像修复算法\r\n\t\t
何凯,沈成南,刘坤,高圣楠AuthorsHTML:何凯,沈成南,刘坤,高圣楠AuthorsListE:HeKai,ShenChengnan,LiuKun,GaoShengnanAuthorsHTMLE:HeKai,ShenChengnan,LiuKun,Gao ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于双重路径损耗的超密集网络性能分析\r\n\t\t
章辉1,李鸾1,隋学铭1,2,吕沅宏1AuthorsHTML:章辉1,李鸾1,隋学铭1,2,吕沅宏1AuthorsListE:ZhangHui1,LiLuan1,SuiXueming1,2,LüYuanhong1AuthorsHTMLE:Zhang ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于级联卷积神经网络的服饰关键点定位算法\r\n\t\t
李锵,姚麟倩,关欣AuthorsHTML:李锵,姚麟倩,关欣AuthorsListE:LiQiang,YaoLinqian,GuanXinAuthorsHTMLE:LiQiang,YaoLinqian,GuanXinUnit:天津大学微电子学院,天 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于投影权值归一化的立体图像质量评价方法\r\n\t\t
李素梅1,王明毅1,赵平1,秦龙斌1,2AuthorsHTML:李素梅1,王明毅1,赵平1,秦龙斌1,2AuthorsListE:LiSumei1,WangMingyi1,ZhaoPing1,QinLongbin1,2AuthorsHTMLE:Li ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于时频分析与神经网络的桥梁冲刷动力评估\r\n\t\t
熊文1,张愉1,李飞泉2,侯训田2,沈旭东3AuthorsHTML:熊文1,张愉1,李飞泉2,侯训田2,沈旭东3AuthorsListE:XiongWen1,ZhangYu1,LiFeiquan2,HouXuntian2,ShenXudong3Auth ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于时空感知级联神经网络的视频前背景分离\r\n\t\t
杨敬钰1,师雯1,李坤2,宋晓林1,岳焕景1AuthorsHTML:杨敬钰1,师雯1,李坤2,宋晓林1,岳焕景1AuthorsListE:YangJingyu1,ShiWen1,LiKun2,SongXiaolin1,YueHuanjing1Autho ...天津大学科研学术 本站小编 Free考研考试 2022-01-16多层特征图堆叠网络及其目标检测方法\r\n\t\t
杨爱萍,鲁立宇,冀中AuthorsHTML:杨爱萍,鲁立宇,冀中AuthorsListE:YangAiping,LuLiyu,JiZhongAuthorsHTMLE:YangAiping,LuLiyu,JiZhongUnit:天津大学电气自动化与信 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于奇异值分解的无参考立体图像质量评价\r\n\t\t
沈丽丽,王莹AuthorsHTML:沈丽丽,王莹AuthorsListE:ShenLili,WangYingAuthorsHTMLE:ShenLili,WangYingUnit:天津大学电气自动化与信息工程学院,天津300072Unit_E ...天津大学科研学术 本站小编 Free考研考试 2022-01-16