张淑芳,王沁宇
AuthorsHTML:张淑芳,王沁宇
AuthorsListE:Zhang Shufang,Wang Qinyu
AuthorsHTMLE:Zhang Shufang,Wang Qinyu
Unit:天津大学电气自动化与信息工程学院,天津,300072
Unit_EngLish:School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
Abstract_Chinese:为了解决传统虚拟试穿方法存在的手臂遮挡与细节模糊问题,提升重建图像的视觉质量,提出一种基于生 成对抗网络的虚拟试穿方法.通过纹理提取模块和残差样式编码模块提取服装细节信息,并结合人体表征输入与人 物姿势来重建试穿图像,解决了手臂遮挡问题,实现了对扭曲失误服装的修复还原,且重建图像服装边缘清晰.定 性分析表明,改进虚拟试穿方法得到的重建图像能清楚地展示试穿人物的手臂部分与服装纹理细节,具有很好的视 觉逼真度和视觉质量.定量分析表明,该方法结构相似性指标提升了 8.56%,与原始参考的像素结构更相似;感知 相似性指标减少了 5.24%,与原始参考的卷积特征更相似;Inception 分数提升了 0.95%,具有更高的清晰度和更好 的多样性.
Abstract_English:To solve the problems of arm occlusion and detail blurring in traditional virtual try-on networks,a new virtual try-on method based on generative adversarial networks is proposed. The information on clothing details was extracted and encoded using the texture extraction and residual style encoding modules,respectively,and the try-on image was reconstructed using the extracted clothing information,the target pose,and the human representation as inputs. Our method could solve the arm occlusion problem,repair distorted garments,and generate images with clear details. Qualitative analysis showed that the try-on images reconstructed by our method could clearly show the model’s arm and clothing texture details with good visual fidelity and quality. Meanwhile,a quantitative analysis showed that using our method,the SSIM improved by 8.56%,which is similar to the original clothing’s pixel structure;LPIP reduced by 5.24%,which is similar to the ground truth’s convolution features;and inception score is improved by 0.95%,which has better definition and diversity.
Keyword_Chinese:图像重建技术;虚拟试衣;图像分析;生成对抗网络
Keywords_English:image reconstruction techniques;virtual try-on;image analysis;generative adversarial network
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6678
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于生成对抗网络的虚拟试穿方法
本站小编 Free考研考试/2022-01-16
相关话题/网络 方法
基于卷积神经网络和迁移学习的癫痫状态识别
曹玉珍,高晨阳,余辉,王江AuthorsHTML:曹玉珍1,高晨阳1,余辉1,王江2AuthorsListE:CaoYuzhen,GaoChenyang,YuHui,WangJiangAuthorsHTMLE:CaoYuzhen1,GaoChenyang1,YuHui1,WangJiang2Unit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于稀疏贝叶斯-RNAMBO 算法的低剂量 CT 盲复原方法
刘晓培,滕建辅,费腾,孙云山AuthorsHTML:刘晓培1,2,滕建辅3,费腾2,孙云山2AuthorsListE:LiuXiaopei,TengJianfu,FeiTeng,SunYunshanAuthorsHTMLE:LiuXiaopei1,2,TengJianfu3,FeiTeng2,Sun ...天津大学科研学术 本站小编 Free考研考试 2022-01-16一种基于主轴功率的刀具状态监测方法
田颖,王文豪AuthorsHTML:田颖,王文豪AuthorsListE:TianYing,WangWenhaoAuthorsHTMLE:TianYing,WangWenhaoUnit:天津大学机械工程学院,天津300072Unit_EngLish:SchoolofMechanicalEnginee ...天津大学科研学术 本站小编 Free考研考试 2022-01-16面向商业和居民混合的配电网短期负荷预测 \n\tHGWOACOA-LSTMN 方法
葛磊蛟,刘航旭,赵康,李华,张波,李元良AuthorsHTML:葛磊蛟1,刘航旭1,赵康2,李华3,张波4,李元良1AuthorsListE:GeLeijiao,LiuHangxu,ZhaoKang,LiHua,ZhangBo,LiYuanliangAuthorsHTMLE:GeLeijiao1,L ...天津大学科研学术 本站小编 Free考研考试 2022-01-16新能源冷热电联供系统优化设计方法研究
王瑞琪,王鹤鸣,孙波AuthorsHTML:王瑞琪1,2,王鹤鸣3,孙波4AuthorsListE:WangRuiqi,WangHeming,SunBoAuthorsHTMLE:WangRuiqi1,2,WangHeming3,SunBo4Unit:1.国网山东综合能源服务有限公司,济南250021 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16计及配网有功无功协调运行优化的SST 规划方法\r\n\t\t
石季英1,乔文1,薛飞2,马丽3,杨文静1AuthorsHTML:石季英1,乔文1,薛飞2,马丽3,杨文静1AuthorsListE:ShiJiying1,QiaoWen1,XueFei2,MaLi3,YangWenjing1AuthorsHTMLE: ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于双重路径损耗的超密集网络性能分析\r\n\t\t
章辉1,李鸾1,隋学铭1,2,吕沅宏1AuthorsHTML:章辉1,李鸾1,隋学铭1,2,吕沅宏1AuthorsListE:ZhangHui1,LiLuan1,SuiXueming1,2,LüYuanhong1AuthorsHTMLE:Zhang ...天津大学科研学术 本站小编 Free考研考试 2022-01-16PTA 干燥机搅拌系统有限元分析方法研究\r\n\t\t
王晓静,张照汶,王锡尧,刘瑞AuthorsHTML:王晓静,张照汶,王锡尧,刘瑞AuthorsListE:WangXiaojing,ZhangZhaowen,WangXiyao,LiuRuiAuthorsHTMLE:WangXiaojing,ZhangZhao ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于级联卷积神经网络的服饰关键点定位算法\r\n\t\t
李锵,姚麟倩,关欣AuthorsHTML:李锵,姚麟倩,关欣AuthorsListE:LiQiang,YaoLinqian,GuanXinAuthorsHTMLE:LiQiang,YaoLinqian,GuanXinUnit:天津大学微电子学院,天 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于投影权值归一化的立体图像质量评价方法\r\n\t\t
李素梅1,王明毅1,赵平1,秦龙斌1,2AuthorsHTML:李素梅1,王明毅1,赵平1,秦龙斌1,2AuthorsListE:LiSumei1,WangMingyi1,ZhaoPing1,QinLongbin1,2AuthorsHTMLE:Li ...天津大学科研学术 本站小编 Free考研考试 2022-01-16