史再峰 ,李慧龙,程 明 ,曹清洁 ,王子菊
AuthorsHTML:史再峰 1, 2,李慧龙 1 ,程 明 1 ,曹清洁 3 ,王子菊 1
AuthorsListE:Shi Zaifeng,Li Huilong,Cheng Ming,Cao Qingjie,Wang Ziju
AuthorsHTMLE:Shi Zaifeng1, 2,Li Huilong1,Cheng Ming1,Cao Qingjie3,Wang Ziju1
Unit:1. 天津大学微电子学院,天津 300072;
2. 天津市成像与感知微电子技术重点实验室,天津 300072;
3. 天津师范大学数学科学学院,天津 300387
Unit_EngLish:1. School of Microelectronics,Tianjin University,Tianjin 300072,China;
2. Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology,Tianjin 300072,China;
3. School of Mathematical Sciences,Tianjin Normal University,Tianjin 300387,China
Abstract_Chinese:低剂量双能计算机断层扫描成像(DECT)技术可以在提供人体内部结构及组织成分信息的同时减少 X 射线 辐射剂量. 然而,剂量的降低会导致 DECT 重建图像中出现大量的噪声及伪影,从而影响对疾病的精确诊断. 为实 现在低剂量条件下重建出高质量的 DECT 图像,提出了一种采用混合高斯模型的正弦图去噪网络来进行伪影及噪声 消除. 该网络由两部分构成:一部分通过残差学习以有监督的方式对校准后低剂量与正常剂量下 DECT 投影数据的 映射关系进行拟合;另一部分采用混合高斯模型以无监督学习的方式提取 DECT 投影数据中噪声的分布模型. 采用 这种监督与无监督学习结合的方式,不仅可以利用卷积运算的特征提取能力来拟合输入与标签之间任意复杂的映射 关系,还可以在无标签约束的情况下,利用输入投影数据的自身分布规律来提高网络模型去噪性能及其泛化能力. 实验使用了 XCAT 生成的 10 名不同人体 DECT 投影数据对网络模型进行训练及测试. 实验结果表明,与正常剂量 下获得的重建图像相比,该方法所获得的去噪后图像均方根误差值低于 6×10-3 ,峰值信噪比以及结构相似性指数分 别超过 36.7 dB 和 0.992. 相比于目前先进的低剂量 CT 噪声去除方法,该方法得到的 DECT 重建图像中组织结构更 加清晰,并且可保留更多的细节信息,可为后续医疗诊断提供精准参考.
Abstract_English:Low-dose dual-energy computed tomography(DECT)has the potential to provide information on human internal structure and tissue components and to reduce X-ray radiation. However,dose reduction often leads to extreme noise and artifacts in reconstructed images,which dramatically affects the accuracy of the diagnosis. In order to obtain high-quality reconstructed images from low-dose DECT projection data,a noise reduction network called sinogram denoising network with Gaussian mixture model(SDN-GMM)was proposed to eliminate artifacts and noise. Further,this network consists of two learning parts:the supervised and the unsupervised. In the supervised learning part,the relationship between calibrated low-dose and normal-dose projection data was determined by residual learn\u0002ing,while the unsupervised learning part extracted the noise distribution of DECT projection data via Gaussian Mix\u0002ture Model. The combination of supervised and unsupervised learning not only can take full advantages of the featureextraction capability from convolution operation to suit any complex mapping relationship between the input and the label but can also make full use of the input data property to further enhance the efficiency and robustness of the net\u0002work model. In the experiment,the DECT projection data from 10 different people acquired from XCAT were used to train and test the proposed network model. Compared with the normal-dose reconstructed images,the results revealed that the root-mean-square error(RMSE)value is lower than 6×10-3,and the peak signal-to-noise ratio(PSNR)and the structural similarity index measure(SSIM)are higher than 36.7 dB and 0.992,respectively. On the other hand, compared to the current advanced low-dose CT noise reduction methods,the DECT reconstructed images produced by proposed method have clearer tissue structure and can retain more detailed information,which will be more valuable for medical diagnosis.
Keyword_Chinese:双能计算机断层扫描成像;低剂量;残差学习;无监督学习;混合高斯模型
Keywords_English:dual-energy computed tomography;low dose;residual learning;unsupervised learning;Gaussian mixture model
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6675
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于 SDN-GMM 网络的低剂量双能 \n\tCT 投影数据去噪方法
本站小编 Free考研考试/2022-01-16
相关话题/网络 数据
级联式生成对抗网络图像修复模型
何凯,刘坤,李宸,马希涛AuthorsHTML:何凯,刘坤,李宸,马希涛AuthorsListE:HeKai,LiuKun,LiChen,MaXitaoAuthorsHTMLE:HeKai,LiuKun,LiChen,MaXitaoUnit:天津大学电气自动化与信息工程学院,天津300072Unit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于生成对抗网络的虚拟试穿方法
张淑芳,王沁宇AuthorsHTML:张淑芳,王沁宇AuthorsListE:ZhangShufang,WangQinyuAuthorsHTMLE:ZhangShufang,WangQinyuUnit:天津大学电气自动化与信息工程学院,天津,300072Unit_EngLish:SchoolofEl ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于卷积神经网络和迁移学习的癫痫状态识别
曹玉珍,高晨阳,余辉,王江AuthorsHTML:曹玉珍1,高晨阳1,余辉1,王江2AuthorsListE:CaoYuzhen,GaoChenyang,YuHui,WangJiangAuthorsHTMLE:CaoYuzhen1,GaoChenyang1,YuHui1,WangJiang2Unit ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于双重路径损耗的超密集网络性能分析\r\n\t\t
章辉1,李鸾1,隋学铭1,2,吕沅宏1AuthorsHTML:章辉1,李鸾1,隋学铭1,2,吕沅宏1AuthorsListE:ZhangHui1,LiLuan1,SuiXueming1,2,LüYuanhong1AuthorsHTMLE:Zhang ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于级联卷积神经网络的服饰关键点定位算法\r\n\t\t
李锵,姚麟倩,关欣AuthorsHTML:李锵,姚麟倩,关欣AuthorsListE:LiQiang,YaoLinqian,GuanXinAuthorsHTMLE:LiQiang,YaoLinqian,GuanXinUnit:天津大学微电子学院,天 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于时频分析与神经网络的桥梁冲刷动力评估\r\n\t\t
熊文1,张愉1,李飞泉2,侯训田2,沈旭东3AuthorsHTML:熊文1,张愉1,李飞泉2,侯训田2,沈旭东3AuthorsListE:XiongWen1,ZhangYu1,LiFeiquan2,HouXuntian2,ShenXudong3Auth ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于时空感知级联神经网络的视频前背景分离\r\n\t\t
杨敬钰1,师雯1,李坤2,宋晓林1,岳焕景1AuthorsHTML:杨敬钰1,师雯1,李坤2,宋晓林1,岳焕景1AuthorsListE:YangJingyu1,ShiWen1,LiKun2,SongXiaolin1,YueHuanjing1Autho ...天津大学科研学术 本站小编 Free考研考试 2022-01-16多层特征图堆叠网络及其目标检测方法\r\n\t\t
杨爱萍,鲁立宇,冀中AuthorsHTML:杨爱萍,鲁立宇,冀中AuthorsListE:YangAiping,LuLiyu,JiZhongAuthorsHTMLE:YangAiping,LuLiyu,JiZhongUnit:天津大学电气自动化与信 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于神经网络的命名数据网学习型FIB 研究
刘开华,闫柳,李卓,宫霄霖,彭鹏,王彬志AuthorsHTML:刘开华,闫柳,李卓,宫霄霖,彭鹏,王彬志AuthorsListE:LiuKaihua,YanLiu,LiZhuo,GongXiaolin,PengPeng,WangBinzhiAuthorsHTMLE:LiuKaihua,YanLiu, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16一种改进的卷积神经网络的室内深度估计方法
梁煜,张金铭,张为AuthorsHTML:梁煜,张金铭,张为AuthorsListE:LiangYu,ZhangJinming,ZhangWeiAuthorsHTMLE:LiangYu,ZhangJinming,ZhangWeiUnit:天津大学微电子学院,天津300072Unit_EngLish: ...天津大学科研学术 本站小编 Free考研考试 2022-01-16