\r曹玉珍1,高晨阳1,余 辉1,张力新1,王 江\r2\r
\r
AuthorsHTML:\r曹玉珍1,高晨阳1,余 辉1,张力新1,王 江\r2\r
\r
AuthorsListE:\rCao Yuzhen1,Gao Chenyang1,Yu Hui1,Zhang Lixin1,Wang Jiang\r2\r
\r
AuthorsHTMLE:\rCao Yuzhen1,Gao Chenyang1,Yu Hui1,Zhang Lixin1,Wang Jiang\r2\r
\r
Unit:\r1. 天津大学精密仪器与光电子工程学院,天津 300072;
2. 天津大学电气自动化与信息工程学院,天津 300072\r
\r
Unit_EngLish:\r1. School of Precision Instruments and Optoelectronics Engineering,Tianjin University,Tianjin 300072,China;
2. School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China\r
\r
Abstract_Chinese:\r\r传统癫痫发作通道选择方法需要提取特征,然后人工进行特征选择,最后基于所选特征训练分类器实现发作检测.为优化特征提取与选择过程,提出一种具有自学习特性,基于深度学习的癫痫脑电通道选择与发作自动检测组合模型.该方法利用卷积自编码器对癫痫脑电数据进行自适应特征提取,获得代表不同通道的特征子集;依据费舍尔准则筛选出特征子集与脑电通道;通过基于参数迁移的一维卷积神经网络实现癫痫发作脑电信号的检测.使用\rPhysioNet\r网站中的\rCHB-MIT\r数据库中\r8\r例有效数据量较为充足的病患脑电数据对组合模型进行有效性评价.对比该方法与基于方差、方差差异性和随机筛选方法得到的结果,在测试集上对癫痫发作检测的准确率、真阳性率、假阳性率的平均值分别达到了\r92.79\r%\r、\r93.07\r%\r、\r5.16\r%\r,均优于其他方法,且模型收敛速度所需的迭代次数平均仅为其他方法的\r10%\r.该方法在癫痫脑电发作检测效果和模型训练成本方面都有一定优势,且在进行脑电通道筛选时不需要手动提取特征,同时也可用于阿尔兹海默症等其他脑部疾病辅助诊断个性化检测模型的建立.\r\r
\r
Abstract_English:\rTraditional epileptic seizure channel selection methods require extraction of features,manual selection of features,and finally training the classifier based on selected features to achieve seizure detection. This study proposed a combined model with auto-learning characteristics based on deep learning to optimize feature extraction and selection process. The method used a convolutional autoencoder to perform adaptive feature extraction on epileptic electroencephalogram(EEG)data,and feature subsets representing different channels were obtained. Then,feature subsets and EEG channels were selected according to the Fisher criteria. Finally,the detection of seizure EEG signals was realized by one-dimensional convolutional neural network based on parameter transfer. Then,EEG data of 8 patients with sufficient data in the CHB-MIT database at PhysioNet were used for the effective evaluation of the combined model. Comparison of the results with the selection methods based on variance,variance difference,and random
demonstrates an average seizure detection accuracy of 92.79%,a true positive rate of 93.07%,and a false positive rate of 5.16% for this method on the test set. All results are superior to other methods,and the average number of it2020 erations required for model convergence is only 10% of the other methods. This method has certain advantages in terms of the detection effect of epileptic EEG and the training cost of the model and does not require the manual extraction of features when performing EEG channel selection. At the same time,it can be used to establish a personalized detection model for other brain disorders such as Alzheimer’s disease.\r
\r
Keyword_Chinese:癫痫发作检测;卷积自编码器;费舍尔准则;参数迁移\r
Keywords_English:epileptic seizure detection;convolutional autoencoder;Fisher criteria;parameter transfer\r
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6443
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于深度学习的癫痫脑电通道选择与发作检测\r\n\t\t
本站小编 Free考研考试/2022-01-16
相关话题/癫痫 深度
船舶抛锚过程中落锚贯入深度研究\r\n\t\t
刘润,汪嘉钰,别社安AuthorsHTML:刘润,汪嘉钰,别社安AuthorsListE:LiuRun,WangJiayu,BieShe’anAuthorsHTMLE:LiuRun,WangJiayu,BieShe’anUnit:天津大学水利工程仿 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于深度学习的端到端乐谱音符识别\r\n\t\t
黄志清,贾翔,郭一帆,张菁AuthorsHTML:黄志清,贾翔,郭一帆,张菁AuthorsListE:HuangZhiqing,JiaXiang,GuoYifan,ZhangJingAuthorsHTMLE:HuangZhiqing,JiaXiang,GuoY ...天津大学科研学术 本站小编 Free考研考试 2022-01-16一种改进的卷积神经网络的室内深度估计方法
梁煜,张金铭,张为AuthorsHTML:梁煜,张金铭,张为AuthorsListE:LiangYu,ZhangJinming,ZhangWeiAuthorsHTMLE:LiangYu,ZhangJinming,ZhangWeiUnit:天津大学微电子学院,天津300072Unit_EngLish: ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于深度学习的短时强降水天气识别
路志英1,任一墨1,孙晓磊2,贾惠珍3AuthorsHTML:路志英1,任一墨1,孙晓磊2,贾惠珍3AuthorsListE:LuZhiying1,RenYimo1,SunXiaolei2,JiaHuizhen3AuthorsHTMLE:LuZhiying1,RenYimo1,SunXiaolei2 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于深度学习的无人机人机交互系统
侯永宏1,叶秀峰1,张亮2,3,李照洋1,董嘉蓉1AuthorsHTML:侯永宏1,叶秀峰1,张亮2,3,李照洋1,董嘉蓉1AuthorsListE:HouYonghong1,YeXiufeng1,ZhangLiang2,3,LiZhaoyang1,DongJiarong1AuthorsHTMLE: ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于深度可分离卷积的实时农业图像逐像素分类研究
刘庆飞,张宏立,王艳玲.基于深度可分离卷积的实时农业图像逐像素分类研究[J].中国农业科学,2018,51(19):3673-3682https://doi.org/10.3864/j.issn.0578-1752.2018.19.005LIUQingFei,ZHANGHongLi,WANGYanL ...中国农业科学院科研学术 本站小编 Free考研考试 2021-12-26磷肥施用深度对夏玉米产量及根系分布的影响
杨云马,孙彦铭,贾良良,贾树龙,孟春香.磷肥施用深度对夏玉米产量及根系分布的影响[J].中国农业科学,2018,51(8):1518-1526https://doi.org/10.3864/j.issn.0578-1752.2018.08.009YANGYunMa,SUNYanMing,JIALia ...中国农业科学院科研学术 本站小编 Free考研考试 2021-12-26石灰性紫色水稻土不同土壤深度中 厌氧氨氧化细菌对施肥的响应
王蓥燕,卢圣鄂,李跃飞,涂仕华,张小平,辜运富.石灰性紫色水稻土不同土壤深度中厌氧氨氧化细菌对施肥的响应[J].,2017,50(16):3155-3163https://doi.org/10.3864/j.issn.0578-1752.2017.16.010WANGYingYan,LUShengE ...中国农业科学院科研学术 本站小编 Free考研考试 2021-12-26控释尿素基施深度对夏玉米产量和氮素利用的影响
丁相鹏,,李广浩,张吉旺,刘鹏,任佰朝,赵斌,山东农业大学农学院/作物生物学国家重点实验室,山东泰安271018EffectsofBaseApplicationDepthsofControlledReleaseUreaonYieldandNitrogenUtilizationofSummerMaiz ...中国农业科学院科研学术 本站小编 Free考研考试 2021-12-26秸秆还田深度对土壤温室气体排放及玉米产量的影响
朱晓晴,安晶,马玲,陈松岭,李嘉琦,邹洪涛,,张玉龙沈阳农业大学土地与环境学院/农业农村部东北耕地保育重点实验室/土肥资源高效利用国家工程实验室,沈阳110866EffectsofDifferentStrawReturningDepthsonSoilGreenhouseGasEmissionandM ...中国农业科学院科研学术 本站小编 Free考研考试 2021-12-26