删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于深度学习的短时强降水天气识别

本站小编 Free考研考试/2022-01-16

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝堟缁€濠傗攽閻樻彃鈧绱撳杈ㄥ枑闁哄啫鐗勯埀顑跨窔瀵粙顢橀悙鑼垛偓鍨攽閿涘嫬浠х紒顕呭灦瀵偊鎮╃紒妯锋嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犻柟缁㈠枟閻撶喖鏌熼崹顔兼殭濞存粍澹嗛埀顒冾潐濞叉牗鏅舵惔銊ョ闁告洦鍓氭慨婊堟煛婢跺顕滈柣搴㈠▕濮婂宕掑▎鎴犵崲闂侀€炲苯澧伴柛瀣洴閹崇喖顢涘☉娆愮彿婵炲鍘ч悺銊╂偂閺囥垺鐓熸俊顖濆吹閸欌偓闂佸憡鐟ョ€氼噣鍩€椤掑喚娼愭繛鎻掔箻瀹曞綊鎳為妷銈囩畾闂佸壊鍋呭ú鏍倷婵犲洦鐓忓┑鐐茬仢閸旀潙霉閸忓吋绀嬫慨濠冩そ閹筹繝濡堕崨顔锯偓楣冩⒑閼姐倕鏋傞柛搴㈠▕閸┾偓妞ゆ帊绀侀崵顒勬煕濞嗗繐鏆欐い鏇秮楠炲酣鎸婃径鎰暪闂備線娼ч¨鈧┑鈥虫喘瀹曘垽鏌嗗鍡忔嫼閻熸粎澧楃敮鎺撶娴煎瓨鐓曢柟鎯ь嚟閹冲洭鏌曢崱妤€鏆欓柍璇查叄楠炲鎮╃喊澶屽簥闂傚倷绀侀幉锟犳偡閿曞倹鏅柣搴ゎ潐閹哥ǹ螞濞戙垹鐒垫い鎺戝枤濞兼劖绻涢幓鎺旂鐎规洘绻堥獮瀣晝閳ь剟寮告笟鈧弻鐔煎礈瑜忕敮娑㈡煛閸涱喗鍊愰柡灞诲姂閹倝宕掑☉姗嗕紦闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏃堟暜閸嬫挾绮☉妯诲櫧闁活厽鐟╅弻鐔告綇妤e啯顎嶉梺绋垮閺屻劑鍩為幋锕€纾兼慨姗嗗幖閺嗗牓姊虹粙娆惧剳闁哥姵鍔楅幑銏犫槈閵忕姷顓哄┑鐐叉缁绘帗绂掗懖鈺冪<缂備降鍨归獮鎰版煕鐎n偅宕屾慨濠呮閹风娀寮婚妷顔瑰亾濡や胶绡€闁逞屽墯濞煎繘濡搁敃鈧鍧楁煟鎼淬劍娑ч柟鑺ョ矋缁嬪顓奸崱鎰盎闂佸搫绋侀崑鍕閿曞倹鐓熼柟鎯х摠缁€鍐磼缂佹ḿ娲寸€规洖宕灒闁告繂瀚峰ḿ鏇炩攽閻橆偅濯伴悘鐐舵椤亞绱撴担铏瑰笡缂佽鐗撳畷娲焵椤掍降浜滈柟鐑樺灥椤忊晝绱掗悩顔煎姕闁靛洤瀚板顕€鍩€椤掑嫬纾块柛鎰皺閺嗭箓鏌曟径鍫濆姉闁衡偓娴犲鐓熼柟閭﹀墮缁狙勩亜閵壯冧槐闁诡喕绮欓、娑樷堪閸愌勵潟濠电姷顣介埀顒€纾崺锝嗐亜閵忊剝绀嬮柡浣稿€块幃鍓т沪閽樺顔囬梻鍌氬€烽懗鑸电仚闂佸搫鐗滈崜娑氬垝濞嗘挸绠婚悹鍥皺閻ゅ洭姊虹化鏇炲⒉闁荤噦绠撳畷鎴﹀冀閵娧咁啎闂佺硶鍓濊摫閻忓繋鍗抽弻锝夊箻鐎涙ḿ顦ㄦ繛锝呮搐閿曨亪銆佸☉妯锋瀻闁圭儤绻傛俊鎶芥⒒娴e懙鍦偓娑掓櫊瀹曞綊宕烽鐕佹綗闂佽宕橀褏澹曢崗鍏煎弿婵☆垰鎼幃鎴澪旈弮鍫熲拻濞撴埃鍋撻柍褜鍓涢崑娑㈡嚐椤栨稒娅犻悗娑欋缚缁犳儳霉閿濆懎鏆遍柛姘埥澶娢熼柨瀣垫綌闂備線娼х换鍡涘焵椤掆偓閸樻牠宕欓懞銉х瘈闁汇垽娼у瓭闂佹寧娲忛崐婵嬪箖瑜庣换婵嬪炊瑜忛弻褍顪冮妶鍡楃瑨閻庢凹鍙冮幃锟犲Ψ閳哄倻鍘介梺鍝勬川閸嬫盯鍩€椤掆偓濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹
路志英1, 任一墨1, 孙晓磊2, 贾惠珍3
AuthorsHTML:路志英1, 任一墨1, 孙晓磊2, 贾惠珍3
AuthorsListE:Lu Zhiying 1, Ren Yimo 1, Sun Xiaolei 2, Jia Huizhen 3
AuthorsHTMLE:Lu Zhiying 1, Ren Yimo 1, Sun Xiaolei 2, Jia Huizhen 3
Unit:1. 天津大学电气自动化与信息工程学院,天津 300072;2. 天津市海洋中心气象台,天津 300074;3. 天津市气象台,天津 300074
Unit_EngLish:1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
2. Tianjin Marine Meteorological Center, Tianjin 300074, China
3. Tianjin Meteorological Bureau, Tianjin 300074, China
Abstract_Chinese:气象预报人员面临的问题之一是如何准确有效地识别短时强降水天气.短时强降水是一种主要由强对流天气形成的气象灾害,产生原因与空气湿度、大气中的水分以及温湿等物理量参数有关,由此提出基于物理量参数和深度学习模型DBNs的短时强降水天气识别模型.首先,利用SMOTE算法人工合成短时强降水少数类(相对于非短时强降水天气类)样本,调整原始数据集不均衡分布问题;然后通过含有高斯玻耳兹曼机的深度学习模型对地面大气监测站逐小时加密的观测量,以及常用于天气预报分析的物理量等低层特征构造出抽象的高层特征,发现数据特征内在关系;最后实现了DBNs短时强降水的自动识别模型.结果表明,该方法能够较为准确地识别短时强降水,对于短时强降水的命中率、误警率和临界成功指数,都有着较好的表现.
Abstract_English:One of the key studies for meteorological practitioners is how to recognize and predict short-time heavy rainfall accurately and effectively. The short-time heavy rainfall is a severe meteorological disaster that is mainly caused by strong convective weather, which is related to such physical parameters as air humidity, moisture in the atmosphere, temperature and humidity. In this paper, a recognition model of the short-time heavy rainfall based on physical parameters and deep learning model DBNs is constructed. Firstly, SMOTE algorithm is used to synthesize a few samples of the short-time heavy rainfall, which is much less than normal weather, to adjust the distribution of the original data set. Secondly, a deep learning model with a Gaussian Boltzmann machine is constructed based on the observed data from automatic monitoring stations on a local ground and the physical quantities commonly used in weather forecast analysis. Finally, the automatic recognition model of short-term heavy rainfall is obtained. Through the analysis of the experimental results, the model can accurately recognize the short-time heavy rainfall, and have a good performance in the POD, FAR and CSI of short-time heavy rainfall recognition.
Keyword_Chinese:
Keywords_English:

PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=5988
相关话题/深度 天气