摘要/Abstract
刺激响应性药物载体由于其优异的控释性能, 在生物医药领域引发了广泛的关注并得到了极为快速的发展. 硼酸酯键因构筑条件简单、生物相容性好以及能够响应生物体内pH、葡萄糖、三磷酸腺苷(ATP)等多种微环境变化的优势被广泛用于刺激响应性药物载体的构筑. 基于硼酸酯键的药物载体类型有药物-聚合物偶联、聚合物胶束、线性-超支化聚合物和介孔二氧化硅等, 它们既能负载抗癌药物, 又能递送胰岛素和基因. 药物通过共价或非共价作用负载到载体上, 并利用硼酸酯键在不同环境下的形成与断裂实现药物的可控释放. 从药物类型、载体类型、药物与载体的结合方式以及硼酸酯键的断裂机制四个方面综述了硼酸酯键在药物传递体系中的应用, 并对其当前面临的主要挑战和未来的发展趋势进行了总结和展望.
关键词: 刺激响应, 药物载体, 硼酸酯键
Because of its excellent controlled release properties, stimulus-responsive drug carriers have attracted extensive attention in the field of biomedicine and have achieved extremely rapid development. Boronate bonds have been widely used as a stimulus-responsive site in the construction of drug carriers because of its simple construction conditions, good biocompatibility, and fast responsiveness to various micro-environmental changes such as pH, glucose and 5'-adenosine triphosphate (ATP) concentration in vivo. The types of drug carriers based on boronate bonds include drug-polymer conjugate, polymer micelles, linear-hyperbranched polymers and mesoporous silica, which could load anticancer drugs and deliver insulin and genes. Besides, drugs could be integrated into carrier by covalent bonding, physical encapsulation, and electrostatic interactions, which could be released at specific sites via endogenous stimuli. The application of boronate bond in drug delivery system is reviewed from four aspects: drug types, carrier types, combination mode of drug and carrier as well as breaking mechanism of boronate bond. The main challenges and future advances in this field are also detailed.
Key words: stimulus-responsive, drug carrier, boronate bond
PDF全文下载地址:
点我下载PDF