ɾ³ý»ò¸üÐÂÐÅÏ¢£¬ÇëÓʼþÖÁfreekaoyan#163.com(#»»³É@)

Öйú¿ÆѧԺÉϺ£°Í˹µÂÑо¿Ëùµ¼Ê¦½Ìʦʦ×ʽéÉܼò½é-DanielFalush

±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ/2021-02-13



Daniel Falush Ñо¿Ô± | ²©Ê¿Éúµ¼Ê¦



²¡Ô­¾ú¶¨Á¿»ùÒò×éѧÑо¿×é




+86
daniel.falush@ips.ac.cn
ÉϺ£ÊÐÔÀÑô·320ºÅÉúÃü¿ÆѧʵÑéÂ¥B403


²¡Ô­¾ú¶¨Á¿»ùÒò×é





1992 B.A. Hons Mathematical Tripos, University of Cambridge
1998 Ph.D. Department of Biology, University College London
1998-2000 Japan Society for the Promotion of Science Fellow,
Department of Mathematical Biology, Kyushu University
2000-2003 Postdoc, Max Planck Institute for Infection Biology, Berlin
2003-2007 Wellcome Trust Career Development Fellow, Department of Statistics, University of Oxford
2008-2010 Senior Research Fellow, Department of Microbiology,
University College Cork
2010-2014 Senior Scientist, Max Planck Institute for Evolutionary Anthropology, Leipzig
5-7.2014 Project Professor, University of Tokyo
2014 ¨C 2019 MRC Senior Research Fellow,
University of Swansea and University of Bath
2019- Principle Investigator and Professor,
Institute Pasteur Shanghai, Chinese Academy of Sciences


Non


75. Cui, Y., C. Yang, H. Qiu, H. Wang, R. Yang and D. Falush (2020). "The landscape of coadaptation in Vibrio parahaemolyticus." Elife 9.74. Karcher, N., E. Pasolli, F. Asnicar, K. D. Huang, A. Tett, S. Manara, F. Armanini, D. Bain, S. H. Duncan, P. Louis, M. Zolfo, P. Manghi, M. Valles-Colomer, R. Raffaeta, O. Rota-Stabelli, M. C. Collado, G. Zeller, D.
73. Falush, F. Maixner, A. W. Walker, C. Huttenhower and N. Segata (2020). "Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations." Genome Biol 21(1): 138.
72. Criscuolo A, Issenhuth-Jeanjean S, Didelot X, Thorell K, Hale J, Parkhill J, Thomson NR, Weill FX, Falush D, Brisse S. The speciation and hybridization history of the genus Salmonella. Microb Genom. 2019 5.
71. Kobras CM, Falush D Gene Transfer: Adapting for life in the extreme. eLife 2019 8, e48999
70. Yang C, Pei X, Wu Y, Yan Y, Yan Y, Song Y, Coyle N, Martinez-Urtaza J, Quince C, Hu Q, Jiang M, Feil E, Yang D, Song Y, Zhou D, Yang R, Falush D, Cui Y Recent Mixing of Vibrio parahaemolyticus populationsThe ISME Journal 2019 13, 2578¨C2588(2019).
69. Lawson D, van Dorp L, Falush D. A tutorial on how not to overinterpret STRUCTURE or ADMIXTUREbareplots. Nature Communications2018 9: 3258.
68. Berthenet E, Yahara K, Thorell K, Pascoe B, Meric G, Mikhail JM, Engstrand L, Enroth H, Burette A, Megraud F, Varon C, Atherton JC, Smith S, Wilkinson TS, Hitchings MD, Falush D, Sheppard SK. A GWAS on Helicobacter pylori strains points to genetic variants associated with gastric cancer risk. BMC Biology2018, 16:84.
67. Malinsky M Trucchi E, Lawson DJ, Falush D. RADpainter and fineRADstructure: Population Inference from RADseq Data. Molecular Biology and Evolution, 2018, 35:1284¨C1290,
66. Thorell K, Yahara K, Berthenet E, Lawson DJ, Mikhail J, Kato I, Mendez A, Rizzato C, Bravo MM, Suzuki R, Yamaoka Y, Torres J, Sheppard SK, Falush D. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas. Plos Genetics. 2017;13(2).
65. Yahara K, Didelot X, Jolley KA, Kobayashi I, Maiden MCJ, Sheppard SK, Falush D. The Landscape of Realized Homologous Recombination in Pathogenic Bacteria. Molecular Biology and Evolution. 2016;33(2):456-71.
64. Koslicki D, Falush D. MetaPalette: a k-mer Painting Approach for Metagenomic Taxonomic Profiling and Quantification of Novel Strain Variation. MSystems. 2016;1(3).
63. Hellenthal G, Falush D, Myers S, Reich D, Busby GBJ, Lipson M, Capelli C, Patterson N. The Kalash Genetic Isolate? The Evidence for Recent Admixture. American Journal of Human Genetics. 2016;98(2):396-7.
62. Falush D. Microbial GWAS coming of age. Nature Microbiology. 2016;1(5).
61. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691-3.
60. Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A, Day T, Hutnik K, Royrvik EC, Cunliffe B, Lawson DJ, Falush D, Freeman C, Pirinen M, Myers S, Robinson M, Donnelly P, Bodmer W, Wellcome Trust Case C, Int Multiple Sclerosis G. The fine-scale genetic structure of the British population. Nature. 2015;519(7543):309-+.
59. Cui YJ, Yang XW, Didelot X, Guo CY, Li DF, Yan YF, Zhang YQ, Yuan YT, Yang HM, Wang J, Wang J, Song YJ, Zhou DS, Falush D, Yang RF. Epidemic Clones, Oceanic Gene Pools, and Eco-LD in the Free Living Marine Pathogen Vibrio parahaemolyticus. Molecular Biology and Evolution. 2015;32(6):1396-410.
58. Cao QZ, Didelot X, Wu ZB, Li ZW, He LH, Li YS, Ni M, You YH, Lin X, Li Z, Gong YN, Zheng MQ, Zhang ML, Liu J, Wang WJ, Bo XC, Falush D, Wang SQ, Zhang JZ. Progressive genomic convergence of two Helicobacter pylori strains during mixed infection of a patient with chronic gastritis. Gut. 2015;64(4):554-61.
57. Yahara K, Didelot X, Ansari MA, Sheppard SK, Falush D. Efficient Inference of Recombination Hot Regions in Bacterial Genomes. Molecular Biology and Evolution. 2014;31(6):1593-605.
56. Yahara K, Didelot X, Ansari MA, Sheppard SK, Falush D. Efficient inference of recombination hot regions in bacterial genomes. Genes & Genetic Systems. 2014;89(6):328-.
55. O'Brien JD, Didelot X, Iqbal Z, Amenga-Etego L, Ahiska B, Falush D. A Bayesian Approach to Inferring the Phylogenetic Structure of Communities from Metagenomic Data. Genetics. 2014;197(3):925-+.
54. Hellenthal G, Busby GBJ, Band G, Wilson JF, Capelli C, Falush D, Myers S. A Genetic Atlas of Human Admixture History. Science. 2014;343(6172):747-51.
53. Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA, Kelly DJ, Bentley SD, Maiden MCJ, Parkhill J, Falush D. Genome-wide association study identifies vitamin B-5 biosynthesis as a host specificity factor in Campylobacter. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(29):11923-7.
52. Sheppard SK, Didelot X, Jolley KA, Darling AE, Pascoe B, Meric G, Kelly DJ, Cody A, Colles FM, Strachan NJC, Ogden ID, Forbes K, French NP, Carter P, Miller WG, McCarthy ND, Owen R, Litrup E, Egholm M, Affourtit JP, Bentley SD, Parkhill J, Maiden MCJ, Falush D. Progressive genome-wide introgression in agricultural Campylobacter coli. Molecular Ecology. 2013;22(4):1051-64.
51. Nell S, Eibach D, Montano V, Maady A, Nkwescheu A, Siri J, Elamin WF, Falush D, Linz B, Achtman M, Moodley Y, Suerbaum S. Recent Acquisition of Helicobacter pylori by Baka Pygmies. Plos Genetics. 2013;9(9).
50. Meric G, Kemsley EK, Falush D, Saggers EJ, Lucchini S. Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Environmental Microbiology. 2013;15(2):487-501.
49. Cui YJ, Yu C, Yan YF, Li DF, Li YJ, Jombart T, Weinert LA, Wang ZY, Guo ZB, Xu LZ, Zhang YJ, Zheng HC, Qin N, Xiao X, Wu MS, Wang XY, Zhou DS, Qi ZZ, Du ZM, Wu HL, Yang XW, Cao HZ, Wang H, Wang J, Yao SS, Rakin A, Li YR, Falush D, Balloux F, Achtman M, Song YJ, Wang J, Yang RF. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(2):577-82.
48. Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of Population Structure using Dense Haplotype Data. Plos Genetics. 2012;8(1).
47. Lawson DJ, Falush D. Population Identification Using Genetic Data. In: Chakravarti A, Green E, editors. Annual Review of Genomics and Human Genetics, Vol 13. Annual Review of Genomics and Human Genetics. 132012. p. 337-61.
46. Didelot X, Meric G, Falush D, Darling AE. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genomics. 2012;13.
45. Kennemann L, Didelot X, Aebischer T, Kuhn S, Drescher B, Droege M, Reinhardt R, Correa P, Meyer TF, Josenhans C, Falush D, Suerbaum S. Helicobacter pylori genome evolution during human infection. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(12):5033-8.
44. Didelot X, Bowden R, Street T, Golubchik T, Spencer C, McVean G, Sangal V, Anjum MF, Achtman M, Falush D, Donnelly P. Recombination and Population Structure in Salmonella enterica. Plos Genetics. 2011;7(7).
43. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:4586-91.
42. Morelli G, Didelot X, Kusecek B, Schwarz S, Bahlawane C, Falush D, Suerbaum S, Achtman M. Microevolution of Helicobacter pylori during Prolonged Infection of Single Hosts and within Families. Plos Genetics. 2010;6(7).
41. Latifi-Navid S, Ghorashi SA, Siavoshi F, Linz B, Massarrat S, Khegay T, Salmanian AH, Shayesteh AA, Masoodi M, Ghanadi K, Ganji A, Suerbaum S, Achtman M, Malekzadeh R, Falush D. Ethnic and Geographic Differentiation of Helicobacter pylori within Iran. Plos One. 2010;5(3).
40. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai WW, Fritz MHY, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prufer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Hober B, Hoffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ C, Novod N, Affourtit J, Egholm M, Verna C, Rudan P, Brajkovic D, Kucan Z, Gusic I, Doronichev VB, Golovanova LV, Lalueza-Fox C, de la Rasilla M, Fortea J, Rosas A, Schmitz RW, Johnson PLF, Eichler EE, Falush D, Birney E, Mullikin JC, Slatkin M, Nielsen R, Kelso J, Lachmann M, Reich D, Paabo S. A Draft Sequence of the Neandertal Genome. Science. 2010;328(5979):710-22.
39. Didelot X, Lawson D, Darling A, Falush D. Inference of Homologous Recombination in Bacteria Using Whole-Genome Sequences. Genetics. 2010;186(4):1435-U567.
38. Sheppard SK, Dallas JF, Strachan NJC, MacRae M, McCarthy ND, Wilson DJ, Gormley FJ, Falush D, Ogden ID, Maiden MCJ, Forbes KJ. Campylobacter Genotyping to Determine the Source of Human Infection. Clinical Infectious Diseases. 2009;48(8):1072-8.
37. Lin EA, Zhang XS, Levine SM, Gill SR, Falush D, Blaser MJ. Natural Transformation of Helicobacter pylori Involves the Integration of Short DNA Fragments Interrupted by Gaps of Variable Size. Plos Pathogens. 2009;5(3).
36. Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources. 2009;9(5):1322-32.
35. Falush D. Toward the Use of Genomics to Study Microevolutionary Change in Bacteria. Plos Genetics. 2009;5(10).
34. Falush D. Haplotype Background, Repeat Length Evolution, and Huntington's Disease. American Journal of Human Genetics. 2009;85(6):939-42.
33. Didelot X, Urwin R, Maiden MCJ, Falush D. Genealogical typing of Neisseria meningitidis. Microbiology-Sgm. 2009;155:3176-86.
32. Didelot X, Lawson D, Falush D. SimMLST: simulation of multi-locus sequence typing data under a neutral model. Bioinformatics. 2009;25(11):1442-4.
31. Didelot X, Darling A, Falush D. Inferring genomic flux in bacteria. Genome Research. 2009;19(2):306-17.
30. Didelot X, Barker M, Falush D, Priest FG. Evolution of pathogenicity in the Bacillus cereus group. Systematic and Applied Microbiology. 2009;32(2):81-90.
29. Sheppard SK, McCarthy ND, Falush D, Maiden MCJ. Convergence of Campylobacter species: Implications for bacterial evolution. Science. 2008;320(5873):237-9.
28. Kulick S, Moccia C, Didelot X, Falush D, Kraft C, Suerbaum S. Mosaic DNA Imports with Interspersions of Recipient Sequence after Natural Transformation of Helicobacter pylori. Plos One. 2008;3(11).
27. Kennemann L, Didelot X, Drescher B, Kuhn S, Olbermann P, Falush D, Droege M, Josenhans C, Suerbaum S. Genome plasticity during chronic infection with H-pylori. International Journal of Medical Microbiology. 2008;298:26-.
26. Hellenthal G, Auton A, Falush D. Inferring human colonization history using a copying model. PLoS Genetics. 2008;4(5).
25. Didelot X, Falush D. Bacterial Recombination in vivo. Hensel M, Schmidt H, editors2008. 23-46 p.
24. McCarthy ND, Colles FM, Dingle KE, Bagnall MC, Manning G, Maiden MCJ, Falush D. Host-associated genetic import in Campylobacter jejuni. Emerging Infectious Diseases. 2007;13(2):267-72.
23. Levine SM, Lin EA, Emara W, Kang J, DiBenedetto M, Ando T, Falush D, Blaser MJ. Plastic cells and populations: DNA substrate characteristics in Helicobacter pylori transformation define a flexible but conservative system for genomic variation. Faseb Journal. 2007;21(13):3458-67.
22. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes. 2007;7(4):574-8.
21. Didelot X, Falush D. Inference of bacterial microevolution using multilocus sequence data. Genetics. 2007;175(3):1251-66.
20. Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D. A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: Convergence or divergence by homologous recombination? Genome Research. 2007;17(1):61-8.
19. Wirth T, Falush D, Lan RT, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MCJ, Ochman H, Achtman M. Sex and virulence in Escherichia coli: an evolutionary perspective. Molecular Microbiology. 2006;60(5):1136-51.
18. Kraft C, Stack A, Josenhans C, Niehus E, Dietrich G, Correa P, Fox JG, Falush D, Suerbaum S. Genomic changes during chronic Helicobacter pylori infection. Journal of Bacteriology. 2006;188(1):249-54.
17. Falush D, Torpdahl M, Didelot X, Conrad DF, Wilson DJ, Achtman M. Mismatch induced speciation in Salmonella: model and data. Philosophical Transactions of the Royal Society B-Biological Sciences. 2006;361(1475):2045-53.
16. Falush D, Bowden R. Genome-wide association mapping in bacteria? Trends in Microbiology. 2006;14(8):353-5.
15. Wilson DJ, Falush D, McVean G. Germs, genomes and genealogies. Trends in Ecology & Evolution. 2005;20(1):39-45.
14. Dingle KE, Colles FM, Falush D, Maiden MCJ. Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. Journal of Clinical Microbiology. 2005;43(1):340-7.
13. Bisharat N, Cohen DI, Harding RM, Falush D, Crook DW, Peto T, Maiden MC. Hybrid Vibrio vulnificus. Emerging Infectious Diseases. 2005;11(1):30-5.
12. Wirth T, Wang XY, Linz B, Novick RP, Lum JK, Blaser M, Morelli G, Falush D, Achtman M. Distinguishing human ethnic groups by means of sequences from Heliclobacter pylori: Lessons from Ladakh. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(14):4746-51.
11. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, Int Huntingtons Dis C. A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clinical Genetics. 2004;65(4):267-77.
10. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, Int Huntingtons Dis C. A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length (vol 65, pg 267, 2004). Clinical Genetics. 2004;66(1):81-.
9. Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH. Origin of extant domesticated sunflowers in eastern North America. Nature. 2004;430(6996):201-5.
8. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ, Graham DY, Vacher S, Perez-Perez GI, Yamaoka Y, Megraud F, Otto K, Reichard U, Katzowitsch E, Wang XY, Achtman M, Suerbaum S. Traces of human migrations in Helicobacter pylori populations. Science. 2003;299(5612):1582-5.
7. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics. 2003;164(4):1567-87.
6. Zhu PX, van der Ende A, Falush D, Brieske N, Morelli G, Linz B, Popovic T, Schuurman IGA, Adegbola RA, Zurth K, Gagneux S, Platonov AE, Riou JY, Caugant DA, Nicolas P, Achtman M. Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(9):5234-9.
5. Falush D, Kraft C, Taylor NS, Correa P, Fox JG, Achtman M, Suerbaum S. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: Estimates of clock rates, recombination size, and minimal age. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(26):15056-61.
4. Falush D, Almqvist EW, Brinkmann RR, Iwasa Y, Hayden MR. Measurement of mutational flow implies both a high new-mutation rate for Huntington disease and substantial underascertainment of late-onset cases. American Journal of Human Genetics. 2001;68(2):373-85.
3. Falush D, Iwasa Y. Size-dependent mutability and microsatellite constraints. Molecular Biology and Evolution. 1999;16(7):960-6.
2. Falush D. Measuring the benefits of sex - Commentary. Journal of Evolutionary Biology. 1999;12(6):1026-8.
1. Rose O, Falush D. A threshold size for microsatellite expansion. Molecular Biology and Evolution. 1998;15(5):613-5.


We are working to provide comprehensive descriptions of the landscape of epistatic fitness interactions ¨C or coadaptation - in both V. parahaemolyticusand H. pylori, taking advantage of their population structure distinguish neutral from adaptive processes and determine the contribution of core and accessory genome elements to adaptive variation. Vibrio parahaemolyticushas a particularly clear population structure, which allows an almost clean separation of neutral and adaptive variation (Figure 2).Our coadaptation scans are a form of GWAS, but do not require any phenotype. I see this as a great virtue, because our understanding of what traits are important in bacterial populations is limited by human imagination and the difficulty of recreating realistic conditions within the laboratory. Thus the approach is the ultimate ¡°top down¡± method to studying variation.
Figure 2. Contrasting patterns of neutral and coadaptive variation in V. parahaemolyticus.Across the genome as a whole EG1.2 strains sharing the same gene pool for >95% of the genome and are barely distinguishable in a neighbour joining tree of genomic variation (A) but more than 100 core and accessory genes, scattered across more than 20 genome regions differ with EG1.1 isolates (B). See our preprint ¡°The landscape of coadaptation in Vibrio parahaemolyticus¡± https://doi.org/10.1101/373936, for more details.

To date my collaborators and I have used a variety of different approaches to identifying fitness interactions within genomes including Fisher¡¯s exact test, linear mixed models implemented in GEMMA, Direct Coupling Analysis (DCA) implemented in SuperDCA, likelihood-based tests of non-random associations on the phylogeny (unpublished method implemented by Xavier Didelot) and even identified putative interaction signals within components identified in Principal Components Analysis (PCA). Just as important, we have put substantial effort into characterizing the nature of the interactions we have found, displaying them in user-friendly format and interpreting them biologically.
Our experience in these analysis, together with my general experience in analysing genetic data over more than 20 years, suggests that model-based methods can have substantial advantages in terms of statistical power and interpretability but only if the model is appropriate to the set of questions at hand. For example DCA methods have been shown to enhance statistical power in identifying direct interactions between sites that are physically proximal in folded protein molecules. However, in our genome-wide scans, we are interested in identifying multilocus interactions and also identifying hub loci that interact with a large number of others, both of which represent scenarios that deviate substantially from the underlying DCA inference model. Our experience is that interactions that seem of highest interest are sometimes quite low in DCA rankings.
Goals for ongoing methods development include:
¡¤Integrating population based and phylogenetic signals. Using both signals at once will enhance statistical power and robustness as well as making it possible to investigate the dependence of fitness interactions on genomic context.
¡¤Identification of quantitative traits without phenotypic measurement. An extremely interesting goal is to detect sets of loci that covary together in response to the underlying trait, without knowing the trait itself as in Figure 3.
¡¤Methods to detect loci that are hubs for many interactions.
¡¤Integrating selection scans with functional and evolutionary annotations.
¡¤Characterization of the pattern of selection maintaining the observed associations.
Figure 3 A virulence associated PC in H. pylori. In H. pylori. This PC is highly enriched for genes involved in virulence as well as iron and/or nickel uptake and appears to represent a quantitative nutrition related trait at the heart of H. pylorivirulence biology (unpublished).


2014- 2019 Named fellow, MRC CLIMB Consortium (to S Sheppard and M Pallen).
2008-2010 Named fellow, Science Foundation of Ireland (to M Achtman) €3m
2008-2012 Wellcome Trust Project Grant ¡ê287,000 (host P Green).
Development of ClonalFrame as a generalised method for analysing bacterial sequence data and association mapping.
2003-2007 Wellcome Trust Research Career Development Fellowship ¡ê340,000
Statistical analysis of bacterial variation (sponsor P. Donnelly)
2004-2006 EPA Cephalosporin Junior Research Fellowship, Linacre College
1993-1997 Wellcome Trust Prize Studentship in Mathematical Biology ¡ê70,000


We use genomic data to understand the different strategies that bacteria (here, Vibrio parahaemolyticus) use to colonize different environments. This will enable us to understand variation in pathogenicity and antibiotic resistance in bacterial populations. We investigate the history and evolution of bacterial populations. For example, Helicobacter pylori has spread around the world along with ancient human migrations.
ʵÑéÊÒ³ÉÔ±(Lab members)
Lab manager£ºGU Bing
Research Assistant£ºXU Wenxuan, WU Hongjin, ZHAOBin
ÕÐÉúÐÅÏ¢(admission information)
Here we welcome students with programming skills, population genetics, evolutionary biology.













Ïà¹Ø»°Ìâ/Öйú¿ÆѧԺ ÉϺ£°Í˹µÂÑо¿Ëù