摘要目前,面向蒙古语的语音识别语音库资源相对稀缺,但存在较多的电视剧、广播等蒙古语音频和对应的文本。该文提出基于语音识别的蒙古语长音频语音文本自动对齐方法,实现蒙古语电视剧语音的自动标注,扩充了蒙古语语音库。在前端处理阶段,使用基于高斯混合模型的语音端点检测技术筛选并删除噪音段;在语音识别阶段,构建基于前向型序列记忆网络的蒙古语声学模型;最后基于向量空间模型,将语音识别得到的假设序列和参考音素序列进行句子级别的动态时间归整算法匹配。实验结果表明,与基于Needleman-Wunsch算法的语音对齐比较,该文提出的蒙古语长音频语音文本自动对齐方法的对齐正确率提升了31.09%。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2892
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
蒙古语长音频语音文本自动对齐的研究
本站小编 Free考研考试/2022-01-02
相关话题/序列 空间 资源 网络 声学
基于稳健词素序列和LSTM的维吾尔语短文本分类
摘要维吾尔语是一种派生类语言,其词是由词干和词缀连接而成的。其中,词干是有实际意义的词汇单元,词缀提供语法功能。该文提出了基于词干单元和长短期记忆(LSTM)网络的维吾尔语短文本分类技术。用基于词-词素平行训练语料的稳健词素切分和词干提取方法,从互联网下载的文本中提取其词干,以此构建词干序列文本语料 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于transformer神经网络的汉蒙机构名翻译研究
摘要机构名翻译是机器翻译的研究内容之一,在机器翻译任务中机构名翻译的准确度,直接影响着翻译性能。在很多任务上,神经机器翻译性能优于传统的统计机器翻译性能,该文中使用基于transformer神经网络模型与传统的基于短语的统计机器翻译模型和改进后的基于语块的机器翻译模型做了对比试验。实验结果表明,在汉 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于胶囊网络的药物相互作用关系抽取方法
摘要药物相互作用是指药物之间存在的抑制或促进等作用。针对目前药物关系抽取模型在长语句中抽取效果较差以及高层特征信息丢失的问题,该文提出了一种结合最短依存路径的胶囊网络关系抽取模型,该方法首先根据原语句解析出两个药物之间的最短依存路径,然后利用双向长短期记忆网络分别获取原语句和最短依存路径的低层语义表 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于循环卷积神经网络的藏文句类识别
摘要句子是语言的最小使用单位,句类识别是为了进一步细化句法和句义研究。由于藏文句尾通常没有特殊的标点符号来识别不同句类,因此这一藏文语言特性就变成了一大难题。该文提出了基于语境和功能特征为一体的句子用途分类方案。首先,该文介绍了文法中藏文句子分类及其特征。其次,收集了大量藏文句子并对其进行了人工标注 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融入分类词典的汉越混合网络神经机器翻译集外词处理方法
摘要在神经机器翻译中,因词表受限导致的集外词问题很大程度上影响了翻译系统的准确性。对于训练语料较少的资源稀缺型语言的神经机器翻译,这种问题表现得更为严重。近几年,受到外部知识融入的启发,该文在RNNSearch模型基础上,提出了一种融入分类词典的汉越混合网络神经机器翻译集外词处理方法。对于给定的源语 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于多通道双向长短期记忆网络的情感分析
摘要当前存在着大量的语言知识和情感资源,但在基于深度学习的情感分析研究中,这些特有的情感信息,没有在情感分析任务中得到充分利用。针对以上问题,该文提出了一种基于多通道双向长短期记忆网络的情感分析模型(multi-channelsbidirectionallongshorttermmemorynetw ...中科院软件研究所 本站小编 Free考研考试 2022-01-02神经网络机器翻译研究热点与前沿趋势分析
摘要机器翻译是指利用计算机将一种语言文本转换成具有相同语义的另一种语言文本的过程。它是人工智能领域的一项重要研究课题。近年来,随着深度学习研究和应用的快速发展,神经网络机器翻译成为机器翻译领域的重要发展方向。该文首先简要介绍近一年神经网络机器翻译在学术界和产业界的影响,然后对当前的神经网络机器翻译的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于生成对抗模型的异质信息网络语义表征方法研究
摘要近些年,网络表示学习问题吸引了大量研究者的关注,而异构信息网络由于其丰富的结构语义信息及其广阔的应用领域,更是成为了网络表示学习领域的重中之重。目前面向异构信息网络的表示学习模型主要可以分为基于生成式模型的表示学习方法和基于判别式模型的表示学习方法,但是很少有工作同时结合两种模型进行表示学习的优 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于卷积循环神经网络的关系抽取
摘要关系抽取是信息抽取领域一项十分具有挑战性的任务,用于将非结构化文本转化为结构化数据。近年来,卷积神经网络和循环神经网络等深度学习模型,被广泛应用于关系抽取的任务中,且取得了不错的效果。卷积网络和循环网络在该任务上各有优势,且存在一定的差异性。其中,卷积网络擅长局部特征提取,循环网络能够捕获序列整 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于膨胀卷积神经网络模型的中文分词方法
摘要目前,许多深度神经网络模型以双向长短时记忆网络结构处理中文分词任务,存在输入特征不够丰富、语义理解不全、计算速度慢的问题。针对以上问题,该文提出一种基于膨胀卷积神经网络模型的中文分词方法。通过加入汉字字根信息并用卷积神经网络提取特征来丰富输入特征;使用膨胀卷积神经网络模型并加入残差结构进行训练, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02