摘要目前,许多深度神经网络模型以双向长短时记忆网络结构处理中文分词任务,存在输入特征不够丰富、语义理解不全、计算速度慢的问题。针对以上问题,该文提出一种基于膨胀卷积神经网络模型的中文分词方法。通过加入汉字字根信息并用卷积神经网络提取特征来丰富输入特征;使用膨胀卷积神经网络模型并加入残差结构进行训练,能够更好理解语义信息并提高计算速度。基于Bakeoff 2005语料库的4个数据集设计实验,与双向长短时记忆网络模型的中文分词方法做对比,实验表明该文提出的模型取得了更好的分词效果,并具有更快的计算速度。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2827
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于膨胀卷积神经网络模型的中文分词方法
本站小编 Free考研考试/2022-01-02
相关话题/中文 计算 实验 网络 结构
一种面向生文本的事件同指消解神经网络方法
摘要事件同指消解在自然语言理解中是一项复杂的任务,它需要在理解文本信息的基础上,发现其中的同指事件。事件同指消解在信息抽取、问答系统、阅读理解等自然语言任务中均有重要作用。该文提出了一个事件同指消解框架,包括事件抽取(ENS_NN)、真实性识别(ENS_NN)和事件同指消解(AGCNN)三个部分。事 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向机器学习的流式文档逻辑结构标注方法研究
摘要针对采用机器学习方法识别流式文档结构时语料库稀少、语料标注复杂的问题,该文在研究文档的逻辑结构和编辑语义特征的基础上,确立流式文档逻辑结构标注体系,并提出一种三段式的半自动文档逻辑结构标注方法:第一阶段通过机助人工实现文档元数据的分离式标注,第二阶段自动重建逻辑结构,第三阶段自动填充特征向量。实 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02结合注意力机制与双向LSTM的中文事件检测方法
摘要事件检测是信息抽取领域的重要任务之一。已有的方法大多高度依赖复杂的语言特征工程和自然语言处理工具,中文事件检测还存在由分词带来的触发词分割问题。该文将中文事件检测视为一个序列标注而非分类问题,提出了一种结合注意力机制与长短期记忆神经网络的中文事件检测模型ATT-BiLSTM,利用注意力机制来更好 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合图结构与节点关联的关键词提取方法
摘要单篇文本的关键词提取可应用于网页检索、知识理解与文本分类等众多领域。该文提出一种融合图结构与节点关联的关键词提取方法,能够在脱离外部语料库的情况下发现单篇文本的关键词。首先,挖掘文本的频繁封闭项集并生成强关联规则集合;其次,取出强关联规则集合中的规则头与规则体作为节点,节点之间有边当且仅当彼此之 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合社交网络用户自身属性的信息传播数学建模与舆情演化分析
摘要针对传统的社交网络信息传播模型极少将用户属性和信息特征这两个因素纳入到信息传播模型研究中的不足,该文提出了一种基于用户自身属性的信息传播模型。首先该文抽取用户影响力、用户态度、用户年龄、信息能量、信息价值等特征并构建交互规则;其次,根据这些特征建立信息传播的数学模型,模拟社交网络舆情演化过程;最 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于循环实体网络的细粒度情感分析
摘要目前,深度神经网络模型已经在文本情感分析领域取得了较好的效果,但是对于属性相关的细粒度的情感分析任务,现有研究方法的效果仍有待改进。该文提出了一种基于循环实体网络来进行细粒度情感分析的方法,在网络中嵌入预定义的评价属性类别信息,利用扩大的内部记忆链来抽取与每个属性类别相关的情感特征,并通过动态记 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02运用多层注意力神经网络识别中文隐式篇章关系
摘要中文隐式篇章关系识别是一个具有挑战性的任务,其难点在于如何捕获论元的语义信息。该文提出了一个模拟人类双向阅读和重复阅读过程的三层注意力网络模型(TLAN)用于识别中文隐式篇章关系。首先,使用Self-Attention层对论元进行编码;然后,通过细粒度的InteractiveAttention层 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合概念与逻辑的中文深层语义描述体系
摘要自然语言的语义理解涉及多个层面的问题,包括以谓词为中心的基本命题义、命题义之外的概念义、逻辑补足义等。目前主流的浅层语义分析主要集中在对命题义的分析上,缺少对概念义和逻辑义的支持,难以辅助计算机对文本的深度理解与推理。该文借鉴论元结构理论、事件语义学等相关语言学理论,突破语义角色标注等浅层语义分 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于神经网络的端到端的事件指代消解研究
摘要事件作为文本信息的关键语义组件,对篇章的理解具有重要意义。由于事件具有自身包含信息丰富、表达方式多样,以及在文本中分布稀疏等特点,使得事件指代消解成为自然语言处理领域的一个难点任务。在以往的事件指代消解任务中,多借助人工提取词匹配和句法结构等信息,再基于这些抽取的特征进行消解,然而这些特征并不能 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于混合神经网络的实体和事件联合抽取方法
摘要实体和事件抽取旨在从文本中识别出实体和事件信息并以结构化形式予以呈现。现有工作通常将实体抽取和事件抽取作为两个单独任务,忽略了这两个任务之间的紧密关系。实际上,事件和实体密切相关,实体往往在事件中充当参与者。该文提出了一种混合神经网络模型,同时对实体和事件进行抽取,挖掘两者之间的依赖关系。模型采 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02