删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

融入分类词典的汉越混合网络神经机器翻译集外词处理方法

本站小编 Free考研考试/2022-01-02

摘要在神经机器翻译中,因词表受限导致的集外词问题很大程度上影响了翻译系统的准确性。对于训练语料较少的资源稀缺型语言的神经机器翻译,这种问题表现得更为严重。近几年,受到外部知识融入的启发,该文在RNNSearch模型基础上,提出了一种融入分类词典的汉越混合网络神经机器翻译集外词处理方法。对于给定的源语言句子,扫描分类词典以确定候选短语句对并标签标记,解码端利用词级组件和短语组件的混合解码网络,很好地生成单词集外词和短语集外词的翻译,从而改善汉越神经机器翻译的性能。在汉越、英越和蒙汉翻译实验上表明,该方法显著提高了准确率,对于资源稀缺型语言的神经机器翻译性能有一定的提升。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2878
相关话题/神经 翻译 语言 网络 资源

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于循环卷积神经网络的藏文句类识别
    摘要句子是语言的最小使用单位,句类识别是为了进一步细化句法和句义研究。由于藏文句尾通常没有特殊的标点符号来识别不同句类,因此这一藏文语言特性就变成了一大难题。该文提出了基于语境和功能特征为一体的句子用途分类方案。首先,该文介绍了文法中藏文句子分类及其特征。其次,收集了大量藏文句子并对其进行了人工标注 ...
    本站小编 Free考研考试 2022-01-02
  • 基于多通道双向长短期记忆网络的情感分析
    摘要当前存在着大量的语言知识和情感资源,但在基于深度学习的情感分析研究中,这些特有的情感信息,没有在情感分析任务中得到充分利用。针对以上问题,该文提出了一种基于多通道双向长短期记忆网络的情感分析模型(multi-channelsbidirectionallongshorttermmemorynetw ...
    本站小编 Free考研考试 2022-01-02
  • 神经网络机器翻译研究热点与前沿趋势分析
    摘要机器翻译是指利用计算机将一种语言文本转换成具有相同语义的另一种语言文本的过程。它是人工智能领域的一项重要研究课题。近年来,随着深度学习研究和应用的快速发展,神经网络机器翻译成为机器翻译领域的重要发展方向。该文首先简要介绍近一年神经网络机器翻译在学术界和产业界的影响,然后对当前的神经网络机器翻译的 ...
    本站小编 Free考研考试 2022-01-02
  • 基于生成对抗模型的异质信息网络语义表征方法研究
    摘要近些年,网络表示学习问题吸引了大量研究者的关注,而异构信息网络由于其丰富的结构语义信息及其广阔的应用领域,更是成为了网络表示学习领域的重中之重。目前面向异构信息网络的表示学习模型主要可以分为基于生成式模型的表示学习方法和基于判别式模型的表示学习方法,但是很少有工作同时结合两种模型进行表示学习的优 ...
    本站小编 Free考研考试 2022-01-02
  • Transformer-CRF词切分方法在蒙汉机器翻译中的应用
    摘要基于编码—解码(端到端)结构的机器翻译逐渐成为自然语言处理之机器翻译的主流方法,其翻译质量较高且流畅度较好,但依然存在词汇受限、上下文语义信息丢失严重等问题。该文首先进行语料预处理,给出一种Transformer-CRF算法来进行蒙古语词素和汉语分词的预处理方法。然后构建了基于Tensor2Te ...
    本站小编 Free考研考试 2022-01-02
  • 会议场景下融合外部词典知识的领域个性化机器翻译方法
    摘要会议场景下通过语音识别和机器翻译技术实现从演讲人语音到另外一种语言文字的翻译,对于跨语言信息交流具有重要意义,成为当前研究热点之一。该文针对由于会议行业属性带来的专业术语和行业用语的翻译问题,提出了一种融合外部词典知识的领域个性化方法。具体而言,首先采用联合占位符和拼接融合的编码策略,通过引入外 ...
    本站小编 Free考研考试 2022-01-02
  • 基于卷积循环神经网络的关系抽取
    摘要关系抽取是信息抽取领域一项十分具有挑战性的任务,用于将非结构化文本转化为结构化数据。近年来,卷积神经网络和循环神经网络等深度学习模型,被广泛应用于关系抽取的任务中,且取得了不错的效果。卷积网络和循环网络在该任务上各有优势,且存在一定的差异性。其中,卷积网络擅长局部特征提取,循环网络能够捕获序列整 ...
    本站小编 Free考研考试 2022-01-02
  • 基于膨胀卷积神经网络模型的中文分词方法
    摘要目前,许多深度神经网络模型以双向长短时记忆网络结构处理中文分词任务,存在输入特征不够丰富、语义理解不全、计算速度慢的问题。针对以上问题,该文提出一种基于膨胀卷积神经网络模型的中文分词方法。通过加入汉字字根信息并用卷积神经网络提取特征来丰富输入特征;使用膨胀卷积神经网络模型并加入残差结构进行训练, ...
    本站小编 Free考研考试 2022-01-02
  • 一种面向生文本的事件同指消解神经网络方法
    摘要事件同指消解在自然语言理解中是一项复杂的任务,它需要在理解文本信息的基础上,发现其中的同指事件。事件同指消解在信息抽取、问答系统、阅读理解等自然语言任务中均有重要作用。该文提出了一个事件同指消解框架,包括事件抽取(ENS_NN)、真实性识别(ENS_NN)和事件同指消解(AGCNN)三个部分。事 ...
    本站小编 Free考研考试 2022-01-02
  • 融合社交网络用户自身属性的信息传播数学建模与舆情演化分析
    摘要针对传统的社交网络信息传播模型极少将用户属性和信息特征这两个因素纳入到信息传播模型研究中的不足,该文提出了一种基于用户自身属性的信息传播模型。首先该文抽取用户影响力、用户态度、用户年龄、信息能量、信息价值等特征并构建交互规则;其次,根据这些特征建立信息传播的数学模型,模拟社交网络舆情演化过程;最 ...
    本站小编 Free考研考试 2022-01-02