摘要关系抽取是信息抽取领域一项十分具有挑战性的任务,用于将非结构化文本转化为结构化数据。近年来,卷积神经网络和循环神经网络等深度学习模型,被广泛应用于关系抽取的任务中,且取得了不错的效果。卷积网络和循环网络在该任务上各有优势,且存在一定的差异性。其中,卷积网络擅长局部特征提取,循环网络能够捕获序列整体信息。针对该现象,该文综合卷积网络抽取局部特征的优势和循环网络在时序依赖中的建模能力,提出了卷积循环神经网络(convolutional recurrent neural network,CRNN)。该模型分为三层: 首先针对关系实例抽取多粒度局部特征,然后通过聚合层融合不同粒度的特征,最后利用循环网络提取特征序列的整体信息。此外,该文还探究多种聚合策略对信息融合的增益,发现注意力机制对多粒度特征的融合能力最为突出。实验结果显示,CRNN优于主流的卷积神经网络和循环神经网络,在SemEval 2010 Task 8数据集上取得了86.52%的F1值。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2847
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于卷积循环神经网络的关系抽取
本站小编 Free考研考试/2022-01-02
相关话题/网络 信息 序列 数据 综合
基于弱标注数据的汉语分词领域移植
摘要近年来,基于神经网络的分词模型在封闭领域文本上取得了很高的性能。然而,在领域移植场景下,即测试数据与训练数据的领域差异较大时,分词的性能会显著下降。该文尝试利用自动获取的弱标注数据来提升领域移植场景下的分词性能。首先,对目前性能最好的BiLSTM-CRF分词模型进行扩展,引入适用于弱标注数据的损 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于膨胀卷积神经网络模型的中文分词方法
摘要目前,许多深度神经网络模型以双向长短时记忆网络结构处理中文分词任务,存在输入特征不够丰富、语义理解不全、计算速度慢的问题。针对以上问题,该文提出一种基于膨胀卷积神经网络模型的中文分词方法。通过加入汉字字根信息并用卷积神经网络提取特征来丰富输入特征;使用膨胀卷积神经网络模型并加入残差结构进行训练, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种面向生文本的事件同指消解神经网络方法
摘要事件同指消解在自然语言理解中是一项复杂的任务,它需要在理解文本信息的基础上,发现其中的同指事件。事件同指消解在信息抽取、问答系统、阅读理解等自然语言任务中均有重要作用。该文提出了一个事件同指消解框架,包括事件抽取(ENS_NN)、真实性识别(ENS_NN)和事件同指消解(AGCNN)三个部分。事 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合社交网络用户自身属性的信息传播数学建模与舆情演化分析
摘要针对传统的社交网络信息传播模型极少将用户属性和信息特征这两个因素纳入到信息传播模型研究中的不足,该文提出了一种基于用户自身属性的信息传播模型。首先该文抽取用户影响力、用户态度、用户年龄、信息能量、信息价值等特征并构建交互规则;其次,根据这些特征建立信息传播的数学模型,模拟社交网络舆情演化过程;最 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于文本和用户信息的在线评论质量检测
摘要随着互联网的迅速发展,越来越多的用户评论出现在社交网站上。面对迅速增长的评论数据,如何为阅读评论的消费者提供准确、真实的高质量评论就显得尤为重要。评论质量检测旨在判断在线评论的质量,在传统的研究中,文本信息通常独立地被用于预测评论质量。但是在社交媒体上,每个文本之间不是独立的,而是可以通过发表文 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于循环实体网络的细粒度情感分析
摘要目前,深度神经网络模型已经在文本情感分析领域取得了较好的效果,但是对于属性相关的细粒度的情感分析任务,现有研究方法的效果仍有待改进。该文提出了一种基于循环实体网络来进行细粒度情感分析的方法,在网络中嵌入预定义的评价属性类别信息,利用扩大的内部记忆链来抽取与每个属性类别相关的情感特征,并通过动态记 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02运用多层注意力神经网络识别中文隐式篇章关系
摘要中文隐式篇章关系识别是一个具有挑战性的任务,其难点在于如何捕获论元的语义信息。该文提出了一个模拟人类双向阅读和重复阅读过程的三层注意力网络模型(TLAN)用于识别中文隐式篇章关系。首先,使用Self-Attention层对论元进行编码;然后,通过细粒度的InteractiveAttention层 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于神经网络的端到端的事件指代消解研究
摘要事件作为文本信息的关键语义组件,对篇章的理解具有重要意义。由于事件具有自身包含信息丰富、表达方式多样,以及在文本中分布稀疏等特点,使得事件指代消解成为自然语言处理领域的一个难点任务。在以往的事件指代消解任务中,多借助人工提取词匹配和句法结构等信息,再基于这些抽取的特征进行消解,然而这些特征并不能 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合源端句法和语义角色信息的AMR解析
摘要序列到序列(seq2seq)的框架可以应用到抽象语义表示(AMR)解析任务中,把AMR解析当作一个从源端句子到目标端AMR图的翻译任务。然而,以前的工作通常把源端句子表示为一个单词序列,忽略了句子内部潜藏的句法和语义角色信息。基于seq2seq框架,该文提出了一个直接而有效的融合句法和语义角色信 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于混合神经网络的实体和事件联合抽取方法
摘要实体和事件抽取旨在从文本中识别出实体和事件信息并以结构化形式予以呈现。现有工作通常将实体抽取和事件抽取作为两个单独任务,忽略了这两个任务之间的紧密关系。实际上,事件和实体密切相关,实体往往在事件中充当参与者。该文提出了一种混合神经网络模型,同时对实体和事件进行抽取,挖掘两者之间的依赖关系。模型采 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02